REVUE FRANÇAISE D'AUTOMATIQUE INFORMATIQUE RECHERCHE OPÉRATIONNELLE. MATHÉMATIQUE

B. D. Sharma
Y. D. Mathur

J. Mitter

Bounds on the rate-distortion function for geometric measure of distortion

Revue française d'automatique informatique recherche opérationnelle. Mathématique, tome 7, no R2 (1973), p. 29-38
http://www.numdam.org/item?id=M2AN_1973__7_2_29_0
© AFCET, 1973, tous droits réservés.
L'accès aux archives de la revue «Revue française d'automatique informatique recherche opérationnelle. Mathématique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

BOUNDS ON THE RATE-DISTORTION FUNGTION FOR GEOMETRIC MEASURE OF DISTORTION

by B. D. Sharma, Y. D. Mathur and J. Mitter (${ }^{1}$)

Abstract

Earlier the authors have defined the Geometric Measure of Distortion ${ }_{\alpha} D_{\theta}$ where $\alpha(>0)$ stands for the cost for distorsion per letter for correct transmission. In this paper we calculate the Rate Distortion Function $R\left({ }_{\alpha} D_{\theta}^{*}\right)$. In Section 3, the Symmetric Measure of Distortion is defined and bounds are obtained on $R\left(\alpha D_{\theta}^{*}\right)$ and αD_{G}^{*}.

1. INTRODUCTION

In a communication process, let $\left\{x_{i}\right\}_{i=0}^{N-1}$ be the set of symbols transmitted and $\left\{Y_{j}\right\}_{j=0}^{m-1}$ be the set of symbols received such that for correct transmission x_{i} corresponds to y_{i} for every i. For an independent letter source, we shall denote by p_{i}, the probability of transmitting x_{i}; and by $q_{j / i}$, the probability of receiving y_{j} when x_{i} is sent. The average mutual information is given by

$$
\begin{equation*}
I(P ; Q)=\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} p_{i} \cdot q_{j / i} \log \left(\frac{q_{j / i}}{\sum_{l} p_{l} \cdot q_{j l l}}\right) \tag{1.1}
\end{equation*}
$$

For convenience, the logarithms are considered to the base e. For a transmission with a fidelity criterion [3], the authors [4] have introduced the geometric measure of distortion given by

$$
\begin{equation*}
{ }_{\alpha} D_{G}=\prod_{i, j} \rho_{i j}^{p_{i} \cdot q_{i / i}} \tag{1.2}
\end{equation*}
$$

where $\rho_{i j}$ is the distortion (cost) of transmitting x_{j} and receiving y_{j} so that

$$
\begin{equation*}
\rho_{i j}>\alpha \text { if } i \neq j \text { and } \rho_{i i}=\alpha \text { where } \alpha>0 \tag{1.3}
\end{equation*}
$$

(1) Faculty of Mathematics University of Delhi (India).

Revue Française d'Automatique, Informatique et Recherche Opérationnelle no août 1973, R-2.

The rate distortion function of the source relative to the given distortion measure is then defined as

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\min I(P ; Q), \tag{1.4}
\end{equation*}
$$

where the minimization is done with respect to $q_{j / i}$ under the condition that

$$
\begin{equation*}
{ }_{\alpha} D_{G} \leqslant{ }_{\alpha} D_{G}^{*} . \tag{1.5}
\end{equation*}
$$

Gallager [2]; Berger [1] and others have investigated noisy channel coding theorems with the Shannon's measure of distortion geven by

$$
\begin{equation*}
D_{s}=\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot d_{i j} \tag{1.6}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{d}_{i j}>0 \quad \text { if } \quad i \neq j \quad \text { and } \quad \mathrm{d}_{i i}=0 \tag{1.7}
\end{equation*}
$$

In this paper, we shall investigate the values of $R\left({ }_{\alpha} D_{G}^{*}\right)$ and prove theorems on the symmetric measure of distortion with the geometric fidelity criterion.

It is rather obvious that $R\left({ }_{\alpha} D_{G}^{*}\right)$ is non negative and a non increasing function of ${ }_{\alpha} D_{G}^{*}$ for minimization in (1.4) is done over a constraint set which is enlarged as ${ }_{\alpha} D_{G}^{*}$ is increased.

2. CALCULATION OF $\boldsymbol{R}\left({ }_{\alpha} D_{G}^{*}\right)$

Theorem 2.1 The set $\left\{q_{j / i}\right\}$ which gives $R\left({ }_{\alpha} D_{G}^{*}\right)$ i.e. $\min I(P ; Q)$ subject to the constraint ${ }_{\alpha} D_{G} \leqslant{ }_{\alpha} D_{G}^{*}$ is given by

$$
\begin{equation*}
q_{j / i}=\frac{q_{j} \cdot c_{i}}{p_{i}} \cdot \rho_{i j}^{-\lambda \cdot a D G} \quad \text { for all } i, j \tag{2.1}
\end{equation*}
$$

where $\quad \sum_{i} c_{i} \rho_{i j}^{-\lambda_{a} D_{G}}=1 \quad$ for all j and $\quad q_{j}=\sum_{i} p_{i} \cdot q_{j i i}$.
Proof : We have to minimize (1.1) under the conditions

$$
{ }_{\alpha} D_{G}=\exp \left(\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot \log \rho_{i j}\right) \leqslant{ }_{\alpha} D_{G}^{*}
$$

and $\sum_{j} q_{j / i}=1$ for all i.
Consider the function

$$
\begin{equation*}
\Phi=I(P ; Q)+\lambda \cdot{ }_{\alpha} D_{G}+\sum_{i} \mu_{i} \cdot \sum_{j} q_{j / i} \tag{2.3}
\end{equation*}
$$

where λ and μ_{i} are Lagrange's constants.
For a suitable choice let $\mu_{i}=-p_{i} \log \frac{c_{i}}{p_{i}}$

Replacing the set $\mu=\left\{\mu_{i}\right\}_{i=0}^{N-1}$ by $c=\left\{c_{i}\right\}_{i=0}^{N-1}$, (2.3) becomes

$$
\begin{equation*}
\Phi=\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} p_{i} \cdot q_{j / i}\left(\log \frac{q_{j / i}}{\sum_{l} p_{l} \cdot q_{j / l}}-\log \frac{c_{i}}{p_{i}}\right)+\lambda \cdot \exp \left(\sum_{i} \sum_{j} p_{i j} \cdot \log \rho_{i j}\right) \tag{2.5}
\end{equation*}
$$

Thus the condition for $q_{j / i}$ to yield a stationary point for Φ is

$$
\begin{equation*}
\log \frac{q_{j / i}}{q_{j}}+\lambda \cdot \exp \left(\sum_{i} \sum_{j} p_{i} q_{j / i} \log \rho_{i j}\right) \log \rho_{i j}-\log \frac{c_{i}}{p_{i}}=0 \tag{2.6}
\end{equation*}
$$

for every i and j
where

$$
\begin{equation*}
q_{j}=\sum_{i} p_{i} \cdot q_{j / i} \tag{2.7}
\end{equation*}
$$

Next (2.6) gives

$$
\begin{equation*}
q_{j / i}=\frac{c_{i}}{p_{i}} \cdot q_{j} \cdot \rho_{i j}^{-\lambda \cdot a D a} \tag{2.8}
\end{equation*}
$$

Multiphying (2.8) by p_{i} and summing over i , we get

$$
\begin{equation*}
\sum_{i} c_{i} \cdot \rho_{i j}^{-\lambda \cdot D_{G}}=1 \quad \text { for all } j \tag{2.9}
\end{equation*}
$$

Again summing up (2.8) over j and using the constraint $\sum_{j} q_{j / i}=1$ for every i, we obtain

$$
\begin{equation*}
\frac{c_{i}}{p_{i}} \cdot \sum_{j} q_{j} \cdot \rho_{i j}^{-\lambda \cdot a D_{G}}=1 \quad \text { for all } i . \tag{2.10}
\end{equation*}
$$

From (2.9) we get a set of M-linear equations in the unknowns c_{i} and another set of M-linear equations in q_{j} obtained from (2.10). If $N=M$, we can usually solve the equations and then find $q_{j / t}$ from (2.8). Since $I(P ; Q)$ is convex U in Q, Φ is also convex U and therefore the solution is a minimum.

The above approach does not take into account the non-negativity of quantities $q_{j / i}$ and the resulting values of $q_{j i i}$, giving minimum of $I(P ; Q)$ may become negative, leading to a non-feasible solution.

In the next theorem we follow an approach which always gives a feasible solution.

Now we define a function

$$
\begin{equation*}
\psi=\sum_{i} \sum_{j} p_{i} \cdot q_{j / i}\left[\log \frac{q_{j / i}}{\sum_{i} p \cdot q_{j / l}}\right]+\lambda \cdot{ }_{\alpha} D_{G} \tag{2.11}
\end{equation*}
$$

where $q_{j / j}>0$.
no août 1973, R-2.

It would be noted that since ${ }_{\alpha} D_{G} \leqslant{ }_{\alpha} D_{G}^{*}$

$$
\begin{equation*}
\min _{q_{j / i}} \psi-\lambda \cdot{ }_{\alpha} D_{G}^{*} \leqslant R\left({ }_{\alpha} D_{G}^{*}\right) . \tag{2.12}
\end{equation*}
$$

Theorem 2.2 For any $\lambda>0$,

$$
\begin{equation*}
\min _{q_{j / i}} \psi=H(U)+\max _{c} \sum_{i=0}^{N-1} p_{i} \cdot \log c_{i} ; c_{i}>0 \tag{2.13}
\end{equation*}
$$

where $H(U)$ is the entropy of the source and $C=\left\{c_{i}\right\}_{i=0}^{N-1}$ is such that

$$
\begin{equation*}
\sum_{i=0}^{N-1} c_{i} \cdot \rho_{i j}^{-\lambda \cdot a D G} \leqslant 1 \quad \text { where } \quad \rho_{i j} \geqslant e \tag{2.14}
\end{equation*}
$$

Also ψ is minimized for values of c_{i} given by (2.8) in terms of $q_{j / i}$ and the necessary and sufficient conditions on c_{i} to achieve the maximum in (2.13) are that there exists an output distribution satisfying (2.10) and (2.14) with equality.

Proof: Consider the function

$$
\begin{equation*}
\Phi=\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot \log \frac{q_{j / i}}{q_{j}}+\lambda \cdot{ }_{\alpha} D_{G}-\sum_{i} p_{i} \log \frac{c_{i}}{p_{i}} \sum_{j} q_{j / i} \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\Phi=\psi-H(U)-\sum_{i} p_{i} \cdot \log c_{i} \tag{2.16}
\end{equation*}
$$

(2.15) can be put as

$$
\begin{aligned}
-\Phi & =\sum_{i} \sum_{j} p_{i} q_{j / i} \log \frac{q_{j} \cdot c_{i}}{q_{j / i} \cdot p_{i}}+\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot \log \rho_{i j}^{-\lambda \cdot a D_{G}} \cdot \log \rho_{i j} e \\
& \leqslant \sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \log \frac{q_{j} \cdot c_{i}}{q_{j / i} \cdot p_{i}}+\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot \log \rho_{i j}^{-\lambda \cdot a D_{G}}
\end{aligned}
$$

Using the inequality $\log x \leqslant x-1$, we obtain

$$
\begin{align*}
-\Phi & \leqslant \sum_{i} \sum_{j} p_{i} q_{j / i}\left[\frac{q_{j} \cdot c_{i} \cdot \rho_{i j}^{-\lambda \cdot a D_{G}}}{q_{j / i} \cdot p_{i}}-1\right] \\
& =\sum_{i} \sum_{j} q_{j} \cdot c_{i} \cdot \rho_{i j}^{-\lambda \cdot a D_{a}}-\sum_{j} q_{j} \\
& \leqslant \sum_{j} q_{j}-\sum_{j} q_{j}=0 \tag{2.17}
\end{align*}
$$

Combining (2.17) and (2.16), we get

$$
\begin{equation*}
\psi \geqslant H(U)+\sum_{i} p_{i} \log c_{i} \tag{2.18}
\end{equation*}
$$

(2.18) is satisfied with equality if and only if the inequalities $\log x \leqslant x-1$ and (2.14) are satisfied with equality, or if and only if

$$
\begin{equation*}
\frac{q_{j} \cdot c_{i} \cdot \rho_{i j}^{-\lambda \cdot a D g}}{q_{j / i} \cdot p_{i}}=1 \quad \text { for all } \quad q_{j / i}>0 \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} c_{i} p_{i j}^{-\lambda_{a} D_{G}}=1 \quad \text { for all } \quad q_{j}>0 \tag{2.20}
\end{equation*}
$$

The conditions in the theorem are necessary for equality in (2.18) as we obtain (2.10) from (2.19) after multiplying by $q_{j / i}$ and summing over j. Again if the output probabilities satisfy (2.10) and if (2.20) is satisfied then as already seen $q_{j / i}$ given by (2.8) is a transition assignment with output probabilities q_{j}. By (2.10), the choice satisfies (2.19) so that the conditions of the theorem are sufficient for equality in (2.18).

3. SYMMETRIC MEASURE OF DISTORTION

If the number of input and output symbols are same and if the cost of correct transmission is α and the cost of any incorrect transmission is β (obviously $\alpha<\beta$) so that the distortion is

$$
\rho_{i j}=\left\{\begin{array}{lll}
\alpha & \text { if } & i=j \tag{3.1}\\
\beta & \text { if } & i \neq j
\end{array}\right.
$$

then we refer to this as Symmetric Measure of Distortion.
Theorem 3.1. Under symmetric measure of Distortion, we have

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right) \geqslant H(\mathrm{U})-\hat{H}\left(\frac{\alpha D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)-\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right) \log (N-1) \tag{3.2}
\end{equation*}
$$

where $\quad \hat{H}\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)=-\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)$

$$
\begin{array}{r}
\log \left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)-\left(1-\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right) \\
\log \left(1-\frac{\alpha D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right) \tag{3.3}
\end{array}
$$

with equality if

$$
{ }_{\alpha} D_{G}^{*} \leqslant \alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(N-1) p_{\min } .
$$

where $p_{\text {min }}$ is the minimum of all p_{i} 's.
no août 1973, R-2.

Proof : The constraint equations (2.14) under symmetric measure of distortion take the form

$$
\begin{equation*}
c_{j} \cdot \alpha^{-\lambda \alpha}+\left(\sum_{i=0}^{N-1} c_{i}-c_{j}\right) \beta^{-\lambda \beta} \leqslant 1 . \tag{3.5}
\end{equation*}
$$

These are all symmetric and can be made to hold with equality by taking $c_{i}=c_{0}$ for each i. Then,

$$
\begin{equation*}
c_{0}=\alpha^{\lambda \alpha} \cdot\left[1+(N-1) \cdot \alpha^{\lambda \alpha} \beta^{-\lambda \beta}\right]^{-1} \tag{3.6}
\end{equation*}
$$

From (2.13) and (3.6), we have

$$
\begin{equation*}
\min _{a, k} \psi \geqslant H(U)+\lambda \cdot \alpha \log \alpha-\log \left[1+(N-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}\right] \tag{3.7}
\end{equation*}
$$

Invoking the relation (2.12) we get for all $\lambda>0$,

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right) \geqslant-\lambda \cdot{ }_{\alpha} D_{G}^{*}+H(U)+\lambda \cdot \alpha \log \alpha-\log \left[1+(N-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}\right] . \tag{3.8}
\end{equation*}
$$

Now if we maximize the right hand side with respect to λ, we get

$$
\begin{equation*}
{ }_{\alpha} D_{G}^{*}=\alpha \log \alpha+\frac{(\beta \log \beta-\alpha \log \alpha)(N-1)}{\beta^{\lambda \beta} \cdot \alpha^{-\lambda \alpha}+(N-1)} \tag{3.9}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\lambda=\frac{1}{\beta \log \beta-\alpha \log \alpha} \log \left(\frac{\beta \log \beta-{ }_{\alpha} D_{G}^{*}}{{ }_{\alpha}^{*} D_{G}^{*}-\alpha \log \alpha}\right)(N-1) . \tag{3.10}
\end{equation*}
$$

(3.2) follows by substituting (3.10) into (3.8).

Now by theorem 2.2 (3.7) would hold with equality if we can find a solution of (2.10) such that $q_{j} \geqslant 0$. Under the symmetric measure of distortion defined by (3.1), (2.10) gives

$$
\begin{align*}
q_{j} & =\frac{\left(p_{i / c_{a}}\right) \alpha^{\lambda \alpha} \cdot \beta^{\lambda \beta}-\alpha^{\lambda \alpha}}{\beta^{\lambda \beta}-\alpha^{\lambda \alpha}} \tag{3.11}\\
& =\frac{p_{i}\left[\beta^{\lambda \beta}+(N-1) \alpha^{\lambda \alpha}\right]-\alpha^{\lambda \alpha}}{\beta^{\lambda \beta}-\alpha^{\lambda \alpha}} \tag{3.12}
\end{align*}
$$

for values of $c_{i}=c_{0}$ given in (3.6).
All $q_{j}{ }^{\prime} s$ will be non negative if

$$
\begin{equation*}
p_{i} \geqslant \frac{1}{\beta^{\lambda \beta} \cdot \alpha^{-\lambda \alpha}+(N-1)} \tag{3.13}
\end{equation*}
$$

If λ is sufficiently large (3.13) holds normally and (3.7) would hold with equality.

Now combining (3.9) and (3.13), we get
$R\left({ }_{\alpha} D_{G}^{*}\right)=H(U)-\hat{H}\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)-\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right) \log (N-1)$
for

$$
{ }_{\alpha} D_{G}^{*} \leqslant \alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(N-1) p_{\min } .
$$

Hence the theorem. |

An Extension of Theorem 3.1

We shall now calculate $R\left({ }_{\alpha} D_{G}^{*}\right)$ for large values of ${ }_{\alpha} D_{G}^{*}$ Without any loss of generality we can assume that the source letters are ordered in decreasing order of probabilities that is

$$
\begin{equation*}
p_{0} \geqslant p_{1} \geqslant \ldots \geqslant p_{N-1} . \tag{3.14}
\end{equation*}
$$

Next suppose that there is an integer $m, 0<m<N-1$ such that

$$
q_{j}\left\{\begin{array}{lll}
=0 & \text { if } & j \geqslant m \tag{3.15}\\
>0 & \text { if } & j \leqslant m-1 .
\end{array}\right.
$$

For $j \leqslant m$, (3.11) then gives

$$
\begin{equation*}
p_{i}=c_{i} \beta^{-\lambda \beta} \tag{3.16}
\end{equation*}
$$

(3.5) must be satisfied with equality for $j \leqslant m-1$, therefore for all $j \leqslant m-1$, all the c_{j} must be the same say c_{0} and $c_{j} \leqslant c_{0}$ for $j \geqslant m$.

The constraint equations (2.14) for $j=0$ gives

$$
\begin{align*}
& \quad c_{0} \alpha^{-\lambda \alpha}+\left(\sum_{i=0}^{m-1} c_{i}+\sum_{i=m}^{N-1} c_{i}-c_{0}\right) \cdot \beta^{-\lambda \beta}=1, \\
& \text { or } \quad c_{0} \alpha^{-\lambda \alpha}+\left(m c_{0}-c_{0}\right) \beta^{-\lambda \beta}+\sum_{i=m}^{N-1} c_{i} \cdot \beta^{-\lambda \beta}=1, \tag{3.17}\\
& \text { or } \quad c_{0}\left[\alpha^{-\lambda \alpha}+(m-1) \beta^{-\lambda \beta}\right]=\sum_{i=0}^{m-1} p_{i}=\sigma_{m}(s a y) \tag{3.16}\\
& \text { or } \quad c_{i}=c_{0}=\frac{\sigma_{m} \cdot \alpha^{\lambda \alpha}}{1+(m-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}} \tag{3.18}
\end{align*}
$$

n^{0} août 1973, R-2.

It is clear from (3.16) that $c_{m} \geqslant c_{m+1} \geqslant \ldots \geqslant c_{N-1}$ and for $j \geqslant m$; $c_{j} \leqslant c_{0}$ will hold if

$$
\begin{equation*}
p_{m} \leqslant \frac{\sigma_{m} \cdot \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}}{1+(m-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}} \tag{3.19}
\end{equation*}
$$

Now $\sum_{i} p_{i} \log c_{i}$ will be maximized for c given by (3.16) and (3.18), if all the $q_{j}^{\prime} s$ given by (3.11) are non negative. This requires from (3.11) that

$$
\begin{equation*}
p_{m-1} \geqslant \frac{\sigma_{m} \cdot \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}}{1+(m-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}} \tag{3.20}
\end{equation*}
$$

since from (3.11) and (3.14) it is obvious that

$$
q_{0} \geqslant q_{1} \geqslant \ldots \geqslant q_{m-1} .
$$

Thus for the values of λ for which (3.19) and (3.20) are satisfied, the given c yields

$$
\begin{align*}
\min _{q i / \epsilon} \psi=H(U) & +\sum_{i=0}^{m-1} p_{i} \log \frac{\sigma_{m} \cdot \alpha^{\lambda \alpha}}{1+(m-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}} \\
& +\sum_{i=m}^{N-1} p_{i} \log \left(p_{i} \cdot \beta^{\lambda \beta}\right) . \tag{3.21}
\end{align*}
$$

The $\min \psi$ over a range of λ specifies $R\left({ }_{\alpha} D_{G}^{*}\right)$ over the corresponding range of λ. The parameter λ is related to ${ }_{\alpha} D_{\mathrm{G}}^{*}$ by

$$
\begin{align*}
&{ }_{\alpha} D_{G}^{*}=\frac{\partial}{\partial \lambda}[\min \psi]=\sigma_{m}\left[\frac{\alpha \log \alpha+(\beta \log \beta)(m-1) \alpha^{\lambda \alpha} \beta^{-\lambda \beta}}{1+(m-1) \alpha^{\lambda \alpha} \cdot \beta^{-\lambda \beta}}\right] \\
&+(\beta \log \beta)\left(1-\sigma_{m}\right) . \tag{3.22}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\lambda=\log \left[\frac{(m-1)\left(\beta \log \beta-{ }_{\alpha} D_{G}^{*}\right)}{{ }_{\alpha} D_{G}^{*}-\beta \log \beta+(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right]^{1 /(\beta \log \beta-\alpha \log \alpha)} \tag{3.23}
\end{equation*}
$$

For λ and ${ }_{\alpha} D_{G}^{*}$ related by (3.22).

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\min _{9 / /} \psi-\lambda \cdot{ }_{\alpha} D_{G}^{*} \tag{3.24}
\end{equation*}
$$

using (3.21) and (3.23); simplifying and rearranging the terms, (3.24) becomes

$$
\begin{aligned}
R\left({ }_{\alpha} D_{G}^{*}\right) & =\sigma_{m}\left[H\left(U_{m}\right)+\left\{\frac{\alpha D_{G}^{*}-\beta \log \beta+(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right\}\right. \\
& \times \log \left\{\frac{\alpha_{G}^{*}-\beta \log \beta+(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\frac{\beta \log \beta-{ }_{\alpha} D_{G}^{*}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right\} \log \left\{\frac{\beta \log \beta-{ }_{\alpha} D_{G}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right\} \\
& \left.-\left\{\frac{\alpha_{G}^{*}-\beta \log \beta+(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}\right\} \log (m-1)\right]
\end{aligned}
$$

This can be equivalently expressed as

$$
R\left({ }_{\alpha} D_{G}^{*}\right)=\sigma_{m}\left[H\left(U_{m}\right)-\hat{H}(\Delta)-\Delta \log (m-1)\right]
$$

where $H\left(U_{m}\right)$ is the entropy of a reduced ensemble with probabilities

$$
\begin{gathered}
p_{0} / \sigma_{m} \quad, \quad p_{1} / \sigma_{m}, \ldots, p_{m-1} / \sigma_{m} \\
\Delta=\frac{\alpha_{G}^{*}-\beta \log \beta+(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}{(\beta \log \beta-\alpha \log \alpha) \sigma_{m}}
\end{gathered}
$$

and

$$
\hat{H}(\Delta)=-\Delta \log \Delta-(1-\Delta) \log (1-\Delta)
$$

Substituting (3.23) into (3.19) and (3.20) we obtain the bounds of ${ }_{\alpha} D_{G}^{*}$ given by
$\left(\beta \log \beta-\alpha \log \alpha\left(m p_{m}-\sum_{i=0}^{m} p_{i}\right)+\beta \log \beta \leqslant{ }_{\alpha} D_{G}^{*} \leqslant(\beta \log \beta-\alpha \log \alpha)\right.$

$$
\times\left[(m-1) p_{m-1}-\sum_{i=0}^{m-1} p_{i}\right]+\beta \log \beta
$$

When $m=N-1$

$$
(\beta \log \beta-\alpha \log \alpha)\left(m p_{m}-\sum_{i=0}^{m} p_{i}\right)
$$

$$
=\alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(N-1) p_{\min }
$$

which is the same as upper limt in (3.4).

ACKNOWLEDGEMENTS

The authors are thankful to Prof. U. N. Singh, Dean, Faculty of Mathematics, University of Delhi, and the third author is thankful to C.S.I.R. (India) for financial assistance.

REFERENCES

[1] Berger T., Rate Distortion Theory, Prentice Hall (1971), New Jersey.
[2] Gallager R. G., Information Theory and Reliable Communication (1968), Wiley, New York.
[3] Shannon C. E., Information and Decision Processes, R. E. Machol, Ed. McGrawHill, New York (1960).
[4]* Sharma B. D., Mitter J. \& Mathur Y. D., Geometric Measure of Distortion. To appear in Statistica, 1973.

APPENDIX

Shannon introduced $\rho_{i j}$ as the single letter distortion when x_{i} is sent and y_{j} is received. As there is always some cost even for correct transmission, we take $\rho_{i j}>\alpha$ for $i \neq j ; \alpha>0$ and $\rho_{i j}=\alpha$ (where α is zero in Shannon's case). Since any measure of distortion is an average of per letter distorsions $\rho_{i j}{ }^{\prime} s$, the measure in its most-generalized form is taken as

$$
{ }_{\alpha} D_{\psi}^{f}=\psi^{-1}\left(\frac{\sum_{i} \sum_{j} f\left(p_{i j}\right) \psi\left(\rho_{i j}\right)}{\sum_{i} \sum_{j} f\left(p_{i j}\right)}\right)
$$

where (i) ψ is strictly monotonic and continuous function defined for non negative values.
and (ii) f is positive valued and bounded weight function in $[0,1]$
By setting $f(x)=x$ and $\psi(x)=\log x$ in (A) we get

$$
{ }_{\alpha} D_{G}=\exp \left(\sum_{i} \sum_{j} p_{i j} \cdot \log \rho_{i j}\right)=\prod_{i, j} \rho_{i j}^{p i q_{i} / i} \quad \text { where } \quad \sum_{i} \sum_{j} p_{i j}=1
$$

[^0]
[^0]: (*) For relevant matter of [4] refer to Appendix.
 Revue Française d'Automatique, Informatique et Recherche Opérationnelle n^{0} août 1973, R-2.

