@article{M2AN_1971__5_3_61_0, author = {Baranger, J. and Duc-Jacquet, M.}, title = {Br\`eve communication. {Matrices} tridiagonales sym\'etriques et matrices factorisables}, journal = {Revue fran\c{c}aise d'informatique et de recherche op\'erationnelle. S\'erie rouge}, pages = {61--66}, publisher = {Dunod}, address = {Paris}, volume = {5}, number = {R3}, year = {1971}, mrnumber = {302663}, zbl = {0231.15019}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1971__5_3_61_0/} }
TY - JOUR AU - Baranger, J. AU - Duc-Jacquet, M. TI - Brève communication. Matrices tridiagonales symétriques et matrices factorisables JO - Revue française d'informatique et de recherche opérationnelle. Série rouge PY - 1971 SP - 61 EP - 66 VL - 5 IS - R3 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_1971__5_3_61_0/ LA - fr ID - M2AN_1971__5_3_61_0 ER -
%0 Journal Article %A Baranger, J. %A Duc-Jacquet, M. %T Brève communication. Matrices tridiagonales symétriques et matrices factorisables %J Revue française d'informatique et de recherche opérationnelle. Série rouge %D 1971 %P 61-66 %V 5 %N R3 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_1971__5_3_61_0/ %G fr %F M2AN_1971__5_3_61_0
Baranger, J.; Duc-Jacquet, M. Brève communication. Matrices tridiagonales symétriques et matrices factorisables. Revue française d'informatique et de recherche opérationnelle. Série rouge, Tome 5 (1971) no. R3, pp. 61-66. http://www.numdam.org/item/M2AN_1971__5_3_61_0/
[1] Approximation optimale de la somme d'une série C.R.A.S., t. 271, Série A, 149-152. | Zbl
(1970).[2] Meilleures formules d'intégration dans certains espaces de Hilbert de fonctions, C.R.A.S., t. 271, Série A, 795-797. | Zbl
(1970).[3] Matrix inversion, its interest and application in analysis of data, J. Amer, Stat. Assoc., 54, 755-766. | MR | Zbl
and (1959).[4] A generalized simplex for factor analysis, Psychometrika, 20, 173-195. | MR | Zbl
(1955).[5] Characterization of 2-type diagonal matrices with an application to order statistics, Journal of Hokkaido College of Art and Literature 6, 66-75
(1955).[6] The inverse of a matrix occurring in first order moring average models, Indian J. of Stat., A 31 part. 1, 79-82.
and (1969).[7] An inversion method for band matrices, J. of Math Analysis and Applications 31, n° 3, 554-558 | MR | Zbl
and (1970).