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CENTRALIZATION AND DECENTRALIZATION
OF DECISION MAKING

THE DECOMPOSITION OF ANY LINEAR PROGRAMME
IN PRIMAL AND DUAL DIRECTIONS
— TO OBTAIN A PRIMAL
AND A DUAL MASTER SOLVED IN PARALLEL
AND ONE OR MORE COMMON SUBPROBLEMS —

by T.O.M. KRONSIO *

University of Birmingham, Great Britain

Résumé. — La méthode de la double décomposition d’un programme linéaire ayant
une solution optimale finie de M. D. Pigot est généralisée au traitement de n’importe quel
programme. On démontre que la méthode peut étre employée en faisant des itérations simul-
tanées ou séquentielles dans les directions primale et duale et que, sous réserve de certaines
conditions, la méthode converge en un nombre fini d’itérations.

On peut signaler que Iapplication a la résolution de problémes non linéaires convexes
séparables a été entreprise par I’auteur dans une autre recherche.

On peut attendre des résultats intéressants de Iapplication de la méthode de décomposi-
tion proposée a la résolution de gros problemes de programmation convexes ayant une struc-
ture triangulaire ou quelqu’autre structure a I'aide d’un réseau de calculateurs interconnectés.

In this investigation the first proof is given that the double decomposition method
proposed by D. Pigot (*) may be generalized to deal with any type of linear programming
problem by considering two or three related linear programmes each of which may be
decomposed into a primal and a dual master and one or more common subproblems,
the solution of which may be undertaken by simultaneous or sequential iterations in pri-
mal and dual directions, and that, if certain conditions are observed, the method will
converge in a finite number of iterations to the optimal solution.

The generalization is based upon the following concepts of the author :

i) That any linear programme (no matter whether it has some type of solution or not)
may be evaluated by the solution of two or three related programmes with finite optimal
primal and dual solutions;

* This research was supported by the Swedish Council for Social Science Research,
Stockholm, Sweden.

(1) D. Picor, Double décomposition d’un programme linéaire, in Actes de la 3¢ Confé-
rence Internationale de Recherche Opérationnelle (Proceedings of the 3rd International
Con;‘eztglrslce on Operational Research held in Oslo, 1-5, July 1963), Dunod, Paris, 1964,
pp. 72-78.
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ii) that any linear programme with finite optimal primal and dual solutions, may be
extended into an equivalent extended problem to which initial feasible primal and dual
solutions may easily be found;

iii) that the extended problem may be constructed so as fo prevent the possibility of
infinite solutions of some subproblem obtained by disregarding certain constraints;

iv) that the primal and dual master problems may contain activities of their own, in
which case the simplex multipliers must form a dual feasible solution to the corresponding
dual constraints, before information may be transferred from the masters to the common
subproblem(s);

“Joining”

resource

balances
B

“Other”
resource

balances

“Other” “Joining”
activities activities
A
Figure 1

. This linear economic problem involves problems of centralization and decentraliza-
tion of decision making, a convergent scheme for which is the aim of the proposed method.

v) that obtaining bounds upon the further improvement of the primal and dual feasible
solutions of the common subproblem(s) may be useful in deciding whether an improved
primal or dual feasible solution, or both, should be sought to this (these) problem(s);

vi) that formal consideration of several independent common subproblems in certain
cases may be useful;

. vii) that not only sequential but also simultaneous iterations in primal and dual direc-
tions may be undertaken and that the process converges to the optimal solution in a finite
number of iterations.

As for certain purposes an economic system may be approximated in the form of a
linear programming problem of large dimensions, this decomposition procedure is of
profound theoretical and practical importance in indicating a possible system for optimal
planning based upon a combination of central price parameters [cp. the Dantzig-Wolfe
primal decomposition method ()] and central quantity parameters [cp. the Bender’s dual

() G. B. DanrziG, Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey, 1963, Chapter 23.
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dec(:ioinposition method (1)]. An economic interpretation of the process is given in Fig.1
and 2.

1t is of interest to observe that another decompositional scheme in primal and dual
directions may be devised which leads to a common master and a primal and dual subpro-
blem and that both of these schemes may be generalized to nonlinear convex separable
programmes (2).

0. THE PROBLEM

It is desired to establish the existence or non-existence of a finite or infinite
optimal primal and dual solution of any linear programming problem by
decomposing some related problems with finite primal and dual solutions into
a primal master problem and one dual master problem with one common
subproblem. Any linear programming problem may be considered to be a
special case of the primal problem (3).

1 Min { Ax + By + Cz
T Hx 4 Ky+ Lz P
Dy + Mz > Q
Nz > R

x>20y>0z>0}
with the corresponding dual problem

) Max {sP +uQ +vR |
™ <4
sK + uD < B
sL +uM 4+ uvN< C

s20u>0v>0 }

It is not known whether some primal or dual solution exists at all to both
problems.

For the solution of the above problem, the author establishes the first gene-
ralization and proof of convergence of the decomposition method proposed
and practically tested by the French operational analyst Daniel Pigot (*).

The generalization and proof of convergence are based upon the following
concepts of the author.

1. Any linear programme (no matter whether it has some type of solution
or not) may be evaluated by the successive solution of at most three related

(1) Cf. M. L. BaLINskI, Integer Programming : Methods, Uses, Computation, in
Management Science, Vol. 12, n° 3, Nov. 1965, pp. 271-274.

(®) Cf. Forthcoming papers by the author in University of Birmingham, CREES,
Discussion Papers, Series RC/A, mimeographed, Birmingham, Great Britain, 1968.

(3 The most important special case is when the matrices H and N with corresponding
vectors x, v, A and R, do not exist.

(*) D. PiGoT, op. cit. in the introduction.
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linear programmes with finite optimal primal and dual solutions (cf. section 1).

2. Any linear programme with finite optimal primal and dual solutions,
may be extended into an equivalent extended problem (!) to which initial
feasible primal and dual solutions may easily be found. The consequences of
this theorem are that the same solution method may be used from the initiation
of computations to the obtention of the near-optimal or optimal solution and
that the proof of convergence probably is facilitated (?) (cf. section 2).

3. The extended problem may be constructed so as to prevent the possibi-
lity of infinite solutions of some subproblem obtained by disregarding certain
constraints (cf. sections 2 and 3 together with the note of section 8).

4. The decomposition of the linear programme may lead to @ primal and
a dual master which contain activities of their own, in which case the appro-
priate simplex multipliers must form a dual feasible solution to the corres-
ponding dual constraints, before information may be transferred from one
master to the common subproblem(s) and to the other master (cf. section 3).

5. The possible usefulness of obtaining bounds upon the further improve-
ment of the primal and dual feasible solutions of a common subproblem in
deciding upon whether an improved primal or dual feasible solution or both
should be sought (cf. section 4).

6. Formal consideration of several independent common subproblems
(cf. section 5).

7. Not only sequential but also simultaneous iterations may be undertaken
in primal and dual directions and the method still be proven to converge to the
optimal solution in a finite number of iterations (cf. section 3).

1. ESTABLISHING THE TYPE AND SOLUTIONS OF ANY LINEAR
PROGRAMME BY THE SOLUTION OF TWO OR THREE DERIVED
LINEAR PROGRAMMES WITH FINITE OPTIMAL SOLUTIONS

Theorem. The optimal primal and dual solution, if any, of any linear
programme with primal

) Min { ¢x |
X
Ax = b
x>0}
(1) When feasible primal and dual solutions have been found without using variables
or constraints of the extended problem, the extended formulation may be dropped, if so
desired, with the consequence that the various types of subproblem may have infinite

solutions, though the complete linear programme may not have any.

() Note that the primal and dual objective functions of a subproblem then always
assume the same optimal value.
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and dual
) Max { ub |
’ ud < ¢
u >0}

may be established by the sequential solution of three related primal (dual)
linear programming problems with finite optimal solutions, viz. :

i) the primal phase 1 or dual bounded homogeneous problem to establish
the existence of a feasible primal or an infinite dual homogeneous solution;

ii) the primal bounded homogeneous or dual phase I problem to establish
the existence of an infinite primal homogeneous solution or a feasible dual
solution;

iii) if both a feasible primal and a feasible dual solution exists then continue
by solving the primal and dual phase II problem.

The proof will be outlined in the continuation.

i. The primal phase I or the dual bounded homogeneous problem involves
minimizing the sum of artificial variables y to establish whether the primal

problem has a feasible solution or not. The sum of artificial variables z y; may

i=1
be denoted by the inner product 1y of the row vector 1 = (1, 1, ..., 1) and the
column vector y = (¥4, Va5 -oes Vu)-

3) Min {Ox + 1y |
T ux+ oy b
x20y>20}=
@ = Max{ub |
’ ud <0
u <1
v =0 }=
=w

Definition of max (a, b) : If a, b, ¢ are vectors with elements ay, b;, ¢,
(i=1,..,m) we define ¢ = max (a, b) to mean that ¢; = max (a;, b;).

As the primal problem (3) has a feasible primal solution

=0
y = max (b, 0)
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and as the primal objective function may never become negative, there exists
a finite optimal primal solution (!). The dual (4) must therefore have the same
finite optimal dual solution (?).

The dual problem (4) may be termed the bounded homogeneous problem
as it is related to the dual homogeneous problem

'®) Max {ub |
uA

0
u 0}

An illustration of the homogeneous and the bounded homogeneous pro-

. -
\ .

uo‘w‘“ u< \
|

Figure 3.
A homogeneous problem and the corresponding bounded homogeneous problem.

A\VARV/AN

RELATIONSHIPS BETWEEN THE BOUNDED HOMOGENEQOUS PROBLEM AND THE HOMO-
GENEQUS PROBLEM

If no solution exists to the homogeneous problem for which the objective
form is greater than zero then no such solution exists to the bounded homo-
geneous problem, because its solution space is part of that of the homogeneous
problem.

If one or more solutions exist to the homogeneous problem for which the
objective form is greater than zero, then one such solution must exist to the
bounded homogeneous problem, because on the basis of any particular solu-
tion u = u* of the homogeneous problem, a solution may be constructed to
the bounded homogeneous problem, if #* < 1 by using the homogeneous

?) Cf. G. B. DANTZIG, opus cit., section 6-4, Theorem 2.
) Opus cit., section 6-4, Theorem 3 and section 6-3, Theorem 1.
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solution else by dividing the u* vector by its largest element ||u*|; the objec-
tive form of the bounded homogeneous problem must in either case similarly
be greater than zero.

Conversely, if no solution exists to the bounded homogeneous problem
with the objective function greater than zero, the same must be true of the
homogeneous problem because of the following reasons.

The homogeneous problem consists of points u € U which either belong to
the bounded homogeneous problem, i.e. the points u = u* € Ut or do not
belong to the bounded homogeneous problem, i.e. the points u = u~ € U™.
No solution with the objective function greater than zero exists for points
belonging to the bounded homogeneous problem. Any solution point u~ of
the homogeneous problem which does not belong to the bounded homogeneous
problem may be obtained by multiplying any one of the points u* = u* (™)
of the bounded homogeneous problem which lie upon the ray joining ¥~ with
the origin by a positive factor k = u~ju®. If the objective function correspon-
ding to any u* point is nonpositive the same must then be true about any u~
point, as the value of the objective function of the point #~ is that of any cor-
responding u* point times the positive factor %, i.e.

wb =@ fututb =ku'b

Finally, if a solution u? exists to the bounded homogeneous problem for
which the objective function is greater than zero, 0 < u® < 1, u%4 <0,
u% = w? > 0, then the homogeneous problem has a solution u = ku® where
k — oo for which the objective function becomes infinitely large, because

Max {ub = ku’b = kw® |ud =ku®’4 < O,u =ku® > 0} =

=Lim {kv° | w’> 0} =00

k=

CONCLUSIONS FROM SOLVING THE PRIMAL PHASE I OR DUAL BOUNDED HOMO-
GENEOUS PROBLEM

Casei—a

The optimal objective function w > 0 implies no primal feasible solution,
and a dual infinite homogeneous solution.

Casei—b
The optimal objective function w = 0 implies a primal feasible solution,

and no dual infinite homogeneous solution.
ii. The primal bounded homogeneous or dual phase I problem

Independently of the outcome of problem i, we may proceed to solve a
problem ii, which is usually part of the primal phase II problem, but here
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considered independently as a bounded problem, with finite optimal primal
solution to assure that a finite optimal dual solution will exist.

(6) Min { ex |
) Ax > 0

—x > —1

x20}=

©) =Max{ u0 —vl |

u,v
uA—v < ¢

uz>0v20}=
=e

The above primal bounded homogeneous problem (6) is similarly related
o the primal h omogeneous problem

®) Min { ex |
) Ax >0

x>0}

and the conclusions above concerning the relations between the bounded

homogeneous problem and the homogeneous problem apply with appropriate
changes.

The dual (7) of the primal bounded homogeneous problem (6) is identical
with the dual phase I problem.

CONCLUSIONS FROM SOLVING THE PRIMAL BOUNDED HOMOGENEOUS OR DUAL
PHASE I PROBLEM

Case ii-a

The optimal objective function e < 0 implies a primal infinite homogeneous
solution, and no dual feasible solution.

Case ii-b

The optimal objective function e = 0 implies no primal infinite homo-
geneous solution, and a dual feasible solution.

CONCLUSIONS FROM THE SOLUTIONS OF BOTH PROBLEMS
Case i-a and ii-a
Neither a primal nor a dual feasible solution.
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Case i-a and ii-b
No primal but an infinite dual solution.
Case i-b and ii-a
An infinite primal solution and no dual solution.

If any of these cases apply the solution of the linear programming problem
is concluded. Finally :

Case i-b and ii-b
Both a primal and a dual feasible solution

implies that there exists a finite optimal solution which may be obtained by
solving the following problem iii.

jii. The primal or dual phase I problem

This problem is identical with problems (1) and (2), and will give the finite
optimal primal and dual solutions.

Thereby the proof of the theorem is completed.

2. INITIAL PRIMAL AND DUAL SOLUTIONS
OF A LINEAR PROGRAMME

Theorem. A linear programme with finite optimal primal and dual
solutions, x°, 0

) Min { cx |
) Ax > b

x20}=cx"=
) =Max {ub |
) ud < c

u >0} =u

to which we find difficulties in immediately constructing feasible primal and
dual solutions may be extended into the linear programme

3) Min { ex + wy |
x,y
Ax+ y > b

—X

\%

Vv
(=R
S~

Il

x>0 y
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O] =Max {ub —uvx
' udA —v < ¢
u < u

u=>0 v> 0}

which has the same optimal x?, 4° solution if the vector of constants x is greater
than the x°® vector

®) x>x°>0
and the vector # greater than the u® vector

© u>u’>0

To the extended problem a feasible primal solution may be found by
putting

©) x=x* where 0<x*<X
y =y* = max (b — Ax*, 0)

and a feasible dual solution by putting

®) u=u* where 0<u*<u

v = v* = max (—c¢ + u*4,0)

Proof. The primal optimal solution of (1) x = x? together with y = 0 is
because of (1) and (5) a primal feasible solution of (3) with the primal objective
function equal to that of (1). The dual optimal solution of (2) u = u® together
with v = 0 is because of (2) and (6) a dual feasible solution of (4) with the dual
objective function equal to that of (2). As the optimal primal objective func-
tion (1) equals the optimal dual objective function (2) it follows that (3) equals (4)
for the feasible primal and dual solutions used, which therefore (!) must be
optimal primal and dual solutions. Consequently the extended problem has
the same optimal x and u solution(s) as the original problem.

FEASIBLE PRIMAL AND DUAL SOLUTIONS TO THE ORIGINAL PROBLEM

If, as will be the case in the following, some solution method is used which
alternately solves the primal (3) and the dual problem (4), then feasible primal
and dual solutions to the original primal (1) and dual problem (2) will be
available when all y = 0 and all v = 0.

(*) Consequence of section 6-3, theorem 1, in G. B, DANTZIG, op. cit.
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3. DECOMPOSING THE PROBLEM INTO
A PRIMAL AND A DUAL
MASTER WITH A COMMON SUBPROBLEM

The results of the preceding sections 1 and 2 may be used to transform the
problem of section 0 into some related linear programmes viz. the extended
Primal Phase I, the Dual Phase I, the Primal or Dual Phase II problems with
Jfeasible primal and dual solutions. These problems are of the type

1

Min {5a -+ ub L e +~Ax -+ By + Cz

|

ab,e,x,9,2 . +Hx +Ky + Lz > P
b +Dy +Mz > Q

¢ +~ Nz =2 R

—x > —X

—y > —v

|
w
\%

|
Ny

az>0 b20 ¢c>0 x>0 y=0 z > 0}=
&)
= Max {sP +uQ +vR —px —qy —rZ
S,u,0,p,q,r
s < 5
u < u
v < v
sH —P < 4
sK 4 uD —q < B
sL +uM +oN —r < C
s20 u=>0 v>0 p=>20 g=20 r=>0 }

bounds upon the corresponding vectors of variables.
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A problem of the above type may be decomposed into the primal master
problem

3) Min {s‘a + Ax+2(ﬁb"+ﬁci+ By'+ CZ)t; |
a,x,ti -
a + Hx + S &' + LMy, P
ey
—x > —Xx
Ztl:l
a0 x>0 ti>0}=
@ = Max { sP — px +w |
S,p,w
s <5
sH— p <A

s(Ky' + LZ%) +w < abt 4 vc' 4 By' 4 Cz
s20 p>0 w unrestricted }

and the primal subproblem

) Min {ub + vc + (B— s*K)y + (C—s"L)z — w*|
e b + Dy +Mz>Q
c 4+ Nz 2 R
— >—y
—zz—Z
b=20 ¢c=0 y=20 zz20} =
=—df<0

No infinite solutions may exist to this subproblem (the coefficients of b
and ¢ in the objective function being nonnegative, and all other variables
being bounded).

A feasible or optimal primal solution of the primal master is assumed to
be known.

a,x,t;
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with corresponding simplex multipliers, representing an infeasible or optimal
dual solution

sk, p, w

The objective function f of the primal master equals the corresponding
simplex multipliers times the right hand constants (1)

(6) f=75d+ Ax* + Z @b* + oc' + By + CZ)* = s*P — p*% + w*

The problem may also be decomposed into the dual master problem

) Max Z (s'P + w'Q — p’x — ¢'y)t; + vR — rz |

tj,0,r

v

Z(st—{-ujM Y + oN —r <C
i

A
|

o
I
P

(8) = Min {ovc +Cz + m |

c.z,m

L + w'M)z + m > P + w/Q — p'x — ¢’

c -+ Nz = R
—z > —z
cz0 z 2 0 m unrestricted }

(*) This may be demonstrated on the basis of the linear programme

Min{c'x + ¢"x" | A’X' + A’X" = b, x’' > 0,x” =0},
o

where x’ and x” denote respectively basic and non-basic variables in the current iteration
with prime and biss indicating the corresponding parts of the vector ¢ and the matrix A.

The values of the basic variables are x’ = A4 and of the simplex multipliers
u = ¢’A’'"'. The primal objective form is c¢'x’ == ¢’A"~'b = ub, which is the simplex
muiltipliers times the right hand constants.

Alternatively, this may be demonstrated by considering the revised simplex method,
in which the value of the basic variable corresponding to the objective function is obtained
by summing the product of each simplex multiplier times the corresponding original right
hand side constant. As the simplex multiplier of the equation corresponding to the objec-

tive function is 1 and the corresponding original right hand constant is 0, the above equa-
lity follows.
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and the dual subproblem

(9  Max {s(P— L") + (@ — M) —px — gy —m'

S,u,p,9
s

/AN
w3

|
N
tN|

sH —p <A

sK + ubD — q < B

s=20 uz0 prz20 g=20 } =
=dh>0

No infinite solutions may exist to this subproblem (the coefficients of p

and ¢ in the objective form being non-positive, and all other variables being
bounded).

A feasible or optimal solution of the dual master is assumed to be known

R R |
L, v, r

with corresponding simplex multipliers representing an infeasible or optimal
feasible dual solution

c,z,m

The objective function 4 of the dual master equals the simplex multipliers
times the right hand constants

(10) h = z (s'P + 'Q — p’x — @)t + V'R — 'z = o' + CZ' + !

J

It is advantageous to note that every inequality of the primal or dual

master may be formulated as an equation by subtracting or adding a nonnega-
tive slack variable.

The dual constraints corresponding to the v, # and slack variables of the dual
master are the relations ¢ + Nz > R,—z > —2Zz, ¢ > 0,z > 0, which are
part of the constraints of the primal subproblem. Therefore the simplex mul-
tipliers ¢! and z! of the dual master may be used to construct an improved
solution to the primal subproblem, provided that none of the v, r and slack
variables is a candidate for introduction into the basis of the dual master.

The dual constraints corresponding to the @, x and slack variables of the

primal master are the relations s < 5, sH—p < 4,5 > 0, p > 0, which are
part of the constraints of the dual subproblem.



88 T. 0. M. KRONSJO

The simplex multipliers satisfy the dual constraints, except for-those dual
constraints which correspond to variables which are candidates for introduction
into the basis (1).

Therefore, the simplex multipliers s* and p* of the primal master may be
used to construct an improved solution to the dual subproblem provided that

none of the a, x and slack variables is a candidate for introduction into the basis
of the primal master.

In the case that only improved feasible solutions of the primal and dual
masters are sought, the above conditions may be satisfied by slight modifica-
tions of the linear programming algorithm used.

For an outline of the algorithm in greater detail the following definitions
are required.

The primal common subproblem is defined as the problem obtained when

z = z' and ¢ = ¢! have been inserted into the primal subproblem (5) and all
constant terms in the objective function dropped, i.e.

an I\'I'Im{ﬁb—i—(B—s"K)y |
7 b 4+ Dy> Q— M
—y>—y
b>0 y=0 }=—df°

which equals in value that of the dual common subproblem similarly defined as

(1) Cf. G. B. DANTZIG, 0p. cit., section 8-5.
The dual constraints corresponding to the linear programme given there may be for-
mulated as
ubP; < ¢ (G=1,..,n

where u is a row vector of unrestricted dual variables. The reduced cost coefficient of a
variable is according to (16)

C1=01——'WP7

A variable which is not a candidate for introduction has a nonnegative reduced cost coef-
ficient, hence
¢—nP, >0

or
P, < ¢ (j = non candidates for introduction)

A variable which is a candidate for introduction will have a negative reduced cost coef-
ficient, hence

cg—nP, <0
or
nP; > c¢f (j = candidates for introduction)

It follows, that the simplex multipliers will only satisfy those dual constraints for
which the corresponding primal variable is not a candidate for introduction into the basis.
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the problem obtained when s = s* and p = p* have been inserted into the dual
subproblem (9) and all constant terms in the objective function dropped, i.e.

12) Max { u(Q — Mz) — gy |
s u <u
uD —q < B—s'K
u>0 qg =20 } =dn°
where
13) —df° =dn°

Further definitions of importance for following the remaining of this
section are

—df optimal value of the primal subproblem

— df° optimal value of the primal common subproblem

—df" value of the primal subproblem with ¢ = ¢!, z = z! for an achieved
feasible solution

— df” possible improvement of the value of the primal subproblem with
¢ =cl, z= 2" by achieving the optimal instead of the current
feasible solution

— df" optimal value of the primal subproblem with ¢ = ¢!, z = Z, thus

(14) _dfl_df”:__df/”
or from (5) and (11)
(15) —df" =—df°+ vct + (C— s*L)z' — wF

dh  optimal value of the dual subproblem
dh® optimal value of the dual common subproblem

dh’ value of the dual subproblem with s = s, p = p* for an achieved
feasible solution

dh” possible improvement of the value of the dual subproblem with
s = s¥, p = p* by achieving the optimal instead of the current
feasible solution

dh” optimal value of the dual subproblem with s = s¥, p = p¥, thus

(16) dn' + dn” =dn”
or from (9) and (12)
a7 dh" = dn°® 4+ s5(P — L") — p'x — m'

Asteriks may replace apostrophes to indicate an estimate absolutely greater
than or equal to the value concerned. This estimate may, whenever necessary,
be successively improved until it equals the value being estimated.

The algorithm may then be described as follows.
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O. Initiation

The solution process is initiated by reading the data including € > 0, for-
mulating the initial parts of the common subproblem, the primal and the
dual masters, setting f = w = 00, h = m = — o0, assigning some suitable
(arbitrary) values to s =s*(0< s*< §5),z=2'(0<2z'<2), and p = pt =
max (— A4 + s*H, 0), ¢ = ¢! = max (R — NzZ', 0).

GC. General control of the process

If f— h > ¢ then step 1, 2, 3 are solved in parallel or in some sequence else

step 4. To ensure convergence the results of the following theorem should be
taken into account.

1. Common subproblem and information transfer decision

On the basis of the latest received information concerning s, p, ¢!, z! the
modified objective function and the modified constants of the common sub-
problem (11) are obtained.

The common subproblem is then solved for i) a primal, or ii) a dual, or
iii) a primal and a dual feasible solution. The decision as to which type of
solution (i, ii, iii) that is desired may be made in the course of the solution
process in order to minimize the computational work necessary to produce a
primal or a dual solution or both which may improve the primal or the dual
master or both. The optimization of the primal or the dual or both solution(s)
of the common subproblem must at least be continued until i) —df’ < 0,
orii)dh’ > 0, oriil) —df' < 0Oand dh’ > 0.

During the solution process the estimates —df** and dAi** may be
obtained and used together with — df’, dh’ for determining which type of
solution should be aimed at in solving the common subproblem (cf. section 4).

If —df’ < 0 information concerning the vector of #; coefficients corres-
ponding to the achieved feasible solution &% y* of the primal common subpro-
blem is sent to the primal master (3).

If dh’ > 0 information concerning the vector of ¢; coefficients correspon-
ding to the achieved feasible solution w/, ¢/ of the dual common subproblem
is sent to the dual master (7).

2. Primal master problem

An improved primal feasible solution is obtained to the primal master (3),
such that none of the a, x and the slack variables is a possible candidate for
introduction into the basis. The value of the objective function f* provides
an upper bound upon the optimal solution. The information s = s¥, p = p¥,
w = wk, f= f¥is sent to the dual master and to the common subproblem.
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3. Dual master problem

An improved primal feasible solution is obtained to the dual master (7),
such that none of the v, r and slack variables is a possible candidate for intro-
duction in the basis. The value of the objective function h! provides a lower
bound upon the optimal solution. The information ¢ = ¢!, z = z!, m = mi,
h = h! is sent to the primal master and to the common subproblem.

4. Final solution

Establishing as may be required
i) the achieved primal feasible (e-optimal) solution

a = d, b= 2 btk c= Z c't,
x=x  y=>M =32
and/or

ii) the achieved dual feasible (e-optimal) solution

s = Z st u :Zujt}, v="0"
J J
f ol jol 1]
p =ZP”jv q = Z‘I”j, r=r
J J

Theorem. The process above will converge to an optimal primal and dual
solution provided that
either

i) a primally feasible solution to the common subproblem is only obtained when
—((f—h)+dh +dh" +df" <0
and this solution is improved until at least
—df' <0 ie. —df°<—vc'—(C—s"L) + W

before the primal master is entered;

i) a dually feasible solution to the common subproblem is only obtained when

f—h—df' —df"—dh" >0
and this solution is improved until at least
d >0 ie. dh®> —sSMP—LN)+px+md

before the dual master is entered;

iii) transfer is compulsory

a) if f—h > 0 and dh" = 0 then go to step 1 (i) and then to 2,
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b) if f—h > 0 and — df"” = 0 then go to step 1 (ii) and then to 3,

c) if f—h =0 then go to step 4,

iv) the terms df” and dh” above represent an envisaged inoptimality of the
corresponding subproblem solution which successively must be decreased to zero;

or

a scheme of iterations is used which will cause transfer from primal to dual
iterations if —df"” = 0, and from dual to primal iterations if dh"” < 0, and

Sfinish if f= h.

Proof

THE INITIATION OF ITERATIONS.

The initial primal subproblem solution must always enter the primal master
to fulfil the constraint z t, = 1 ; similarly, the initial dual subproblem sclution
i=1
must always enter the dual master to fulfil the constraint z t; = 1, hence the
Jj=1
process may always be started.

The optimal solution of the primal and dual common subproblem must lead
to an improvement of either the primal or the dual master or both.

The value of the primal subproblem is — d /" and that of the dual subpro-
blem di”. If —df” < 0 (or df” > 0) then the primal subproblem solution
must improve the primal master (degeneracy being handled by the lexicogra-
phic method). Similarly, if dA” > O then the dual subproblem solution must
improve the dual master (degeneracy being handled by the lexicographic
method). A positive value of df” -+ di” means that either df” or dA” or
both are positive and hence that the corresponding primal and dual subpro-
blem solutions may improve either the primal or the dual or both masters.

Thus it is of importance to consider the value of
(18)
df” 4 dn" =
=—(—df° L o'+ (C—sL)2' —w) +  =df” from (15)

+ @h° P — L) —prx—m' = = dh" from (17)
= §P—px+w— = f from (6)
— (@t + - mh) — ! —=—h from (10)
— (—df%) + di® = | —~ 0 from (13)

= f—h
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According to the Duality Theorem (') the primal objective function will always
be greater than or equal to the dual objective function, hence f—h > 0.
Unless an optimal primal and an optimal dual solution have been found the
strict inequality will apply, thus

(19) df" +dh" =f—h>0

Therefore, the optimal primal and dual solution of the common subpro-
blem may be used to improve either the primal master or the dual master or
both until an optimal primal and an optimal dual solution have been obtained
to the entire problem, in which case f—h = 0.

The cases in which the optimal primal and the optimal dual common subpro-
blem solution may not improve one of the masters.
It follows from (19) that

(20) if df">f—h>0 then dr” < 0

in which case it would be of no avail to obtain an improved feasible or optimal
dual common subproblem solution as neither would be able to improve the
dual master.

Similarly, it follows from (19) that
1) if di" > f—h>0 then df" <0

in which case it would be of no avail to obtain an improved feasible or optimal
primal common subproblem solution as neither would be able to improve the
primal master.

The corresponding conditions for the case of a certain inoptimality of the
primal and dual common subproblem solutions.

If instead of considering a completely optimal common subproblem solu-
tion, a certain amount of inoptimality is envisaged formula (19) may be expres-
sed using (14) and (16) as

(22) df' +df" +dh +dh" =f—h

The primal common subproblem solution may only improve the primal
master if

23) —df' <0
which condition using (22) may be expressed as
24) —df ' =—(( —h+dh +dh" +df" < 0

from which condition i) of the theorem is obtained.

() Cf. G. B. DaNTZIG, 0p. cit., section 6-3-(6).
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Similarly, the dual common subproblem solution may only improve the
dual master if’

(25 d’ > 0
which condition using (22) may be expressed as
(26) dh! =f—h—df' —df"—dh" >0

from which condition ii) of the theorem is obtained.

The possibility of reducing dh’, dh", df” to zero in a finite number of itera-
tions will always enable further improvement of the primal master unless an
optimal solution has already been attained.

By iterating between the dual master and dual subproblem (s, p unchanged)
we may reduce in a finite number of iterations

di’ + dh” =dh”" =0

Similarly, by finding a completely optimal primal common subproblem
solution we may reduce in a finite number of pivots

dfll =O

Therefore we may always make the expression (24) less than zero and thus
enable an improvement of the primal master unless

f—h=0

in which case both an optimal primal and an optimal dual solution have been
found.

Similarly, the possibility of reducing df’, df", dh" to zero in a finite number
of iterations will always enable further improvement of the dual master unless
an optimal dual solution has already been attained.

As df’, df”, dh” may always be reduced to zero in a finite number of
operations, the expression (26) may always be fulfilled, and hence an improved
dual solution always be possible unless both an optimal primal and an optimal
dual solution have been reached.

THE CONDITIONS FOR TRANSFER NOT FULFILLED AT EVERY STAGE.

That the conditions (24) and (26) are not redundant may be seen by consi-
dering the case of the primal master having reached the optimal primal solu-
tion and simplex multipliers, though the dual master has one or more subpro-
blem solutions to complete before the optimal dual solution may be reached.
As then f= f9, h+ dh” > K = f0 it follows that —df” > 0 and expres-
sion (24) will therefore correctly prevent transfer to the primal master. Concur-
rently expression (26) would permit transfer from the primal master as d f = 0.

The conditions (24) and (26) expiain the interesting experience of D. Pigot (1)

(1) Cp. D. PiGoT, op. cit., end of section 2.3.
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of the impossibility of affecting an improvement of one of the master problems
(the primal) after only one iteration had been made between the other master
(the dual) and its subproblem, and that on the average three (dual) iterations
proved necessary before a successful transfer to the other (primal) iteration
direction was possible.

CONVERGING TOWARDS THE OPTIMUM.

If alternating transfers are made from primal to dual iterations and from
dual to primal iterations fulfilling conditions i-iv, this will lead to strictly
monotonically improved primal and dual master solutions with their final
value equal to the optimal solution of the problem.

As no non-improving subproblem solution may ever enter a master, any
alternating transfer between the various problems making some iterations at
each stage, will lead to monotonically improved primal and dual masters
solutions with their final value equal to the optimal solution of the problem.

4. AN UPPER BOUND —df** OR dr** UPON
THE POSSIBLE FURTHER IMPROVEMENT —df” OR dA’

A feasible solution is assumed to be available to the primal subproblem
with inserted ¢!, z! solution, thus to the problem 3-(11) such that no slack
variable is a candidate for introduction into the basis.

As longs as the u coefficients have been chosen large enough, no b variable
will ever become a candidate for introduction. Therefore, only y variables
with negative reduced cost coefficients
m B=(B—sK)—u'D—qg'(—1I)

where ¢, ¢ represent the simplex multipliers corresponding to the b, y* solu-
tion, may be candidates for introduction into the basis. The y variables are,
however, subject to the upper bound jy.

A lower bound upon the possible improvement of the primal subproblem
with unchanged ¢, z, is therefore given by
) —dfEx = Z (if B; < O then B,3, else 0)
j
S _ d fll
assuming that no b and no slack variable is a candidate for introduction into
the basis

An upper bound upon the possible improvement of the dual subproblem
with unchanged s, p, is similarly derived by defining the reduced revenue
coefficients

3 0 = (0 —Mz")— I’ — Dy’
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where b1, yi represent the simplex multipliers corresponding to the w/, ¢’ solu-
tion, and obtaining

@) dh** — Z (if §; > O then #,Q; else 0)

> dh”

assuming that no ¢ and no slack variable is a candidate for introduction into
the basis.

If an optimal solution is obtained to the corresponding subproblem, the
estimates become
—df**=—df" =0
and
dh** =dh" =0
as no variable is a candidate for introduction.

The above lower and upper bounds may be used to avoid unnecessary
improvement of a primal or dual feasible solution of the common subpro-
blem if —df’ —df** > 0or dh’ + dh** < 0, respectively.

If —df’—df** > 0 then it follows from (2) and 3-(14) that even an

optimal primal common subproblem solution will not be able to improve
the primal master as

__dfl/I:_dff_df/IB ———df'—df** >0

in which case further computations aiming at improving the primal common
subproblem are of no use.

Similarly, if di’ + dh** < O then it follows from (4) and 3-(16) that even
an optimal dual common subproblem solution will not be able to improve the
dual master as

dn" =dh' + dh” < db’ + dh** < 0

in which case further computations aiming at improving the dual common
subproblem solution are of no use.

S. SUITABLE MODIFICATION
IN THE CASE OF BLOCK-DIAGONAL
STRUCTURE OF THE COMMON SUBPROBLEM

If the common subproblem D in section 3-(11)-(12) has a block-diagonal
structure (as in the introductory illustration), then it may be considered to
consist of as many independent part problems as there are blocks and the
solution of each of these may take place in parallel.

In the primal phase, different solutions n € N’(g, /) of the part problems g € S
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corresponding to the same quantity solution / € £ of the joining activities may
be combined to form a solution of the entire primal subproblem or some
fraction thereof.

It may therefore be useful to reformulate the constraints of the primal
master

$)) Zt,-:l

>0 (i€d)

by defining nonnegative fractions #, denoting by which amount the quantity
solutions / € £ of the joining activities are combined together with the quantity
solutions i of the complete primal subproblem

¥} Zti-i—Zt,:l

t; >0 (i€d)
>0 (lef)

and other nonnegative fractions ¢, denoting by which amount the #* solu-
tion of the gt part problem corresponding to the /™ quantity solution of the
joining activities are taken.

The combinations of fractions of part problem solutions corresponding to
a particular fraction of a solution of joining activities must fulfil the following
conditions, if the overall combination should give a feasible solution of the
whole primal subproblem.

3) Z tgw=1 (€L, g€9B)

neN’(L.9)
tlgn P 0 (IeE,geQ,neN’(l,g))

The number of equations in (3) would be equal to the number of solutions
for the joining activities times the number of part problems. As the number of
solutions f. for the joining activities would increase with every dual iteration,
the number of such solutions separately considered by using the constraints (3)
may have to be kept limited.

This may be achieved by exchanging some apparently less important sub-
problem solution based upon ¢, and corresponding #;., variables into a com-
plete subproblem solution i’ based upon a fixed combination of the different
solutions n € N’(I, g) of the part problems g € G. The corresponding fixed
solution of each part problem g could then be selected on the basis of the
current values of the fractions

) Lo (geS,neN(,g))
II
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where I'gn denotes the 't solution of the g't part problem correspounding to
the /'t quantity solution of the joining activities.

In exchanging a ?,. variable for an additional #,. variable, we shall always
abolish |G| () of the constraints (3) and |S| or more variables 7., and still
obtain the same solution to the master problem with the previous values of
other variables and ¢;. = ;.. In the case that ¢,. is basic and more than [QI
basic variables ¢,,,, are abolished the corresponding solution of the master
problem will become degenerate.

In the dual phase, different solutions m € ALk, g) of the part problems g € §
corresponding to the same: price solution k € X\ for the joining resource balances
may be combined in the same way to form a solution of the entire dual sub-
problem.

If the above approach of combining different solutions of part problems is
adopted the linear programme procedure used must be able to deal with
degenerate solutions arising from

i) the replacement of several variables
tigns 1y (tigms t,) DY one variable #; (2)) ;
i) all the constraints (3) have constant terms equal to zero (3).

6. REQUIREMENTS ON THE LP ALGORITHMS
FOR THE SOLUTION OF THE MASTER PROBLEMS
AND THE COMMON SUBPROBLEM

The linear programme procedure(s) used to solve the master problems and
the subproblem should deal in a special way with the added variables and the
upper bounds, and before information is transferred from one master problem
to the other and to the common subproblem(s) ensure that no variable from
certain groups of variables may be a candidate for introduction into the basis.

The method used for solving the common subproblem should give a
feasible primal and/or a feasible dual solution. This may be obtained by using

1) any linear programming procedure to determine both an improved
primal feasible and an improved dual feasible solution, or to determine an
optimal solution, thereby obtaining both an optimal primal feasible and an
optimal dual feasible solution; or

(") The number of elements of the set G, i.e. the number of part problems is here
denoted by [ 1.
(®) It seems likely that a useful way of handling the latter degeneracy is : to calculate
a joint reduced cost coefficient based upon any particular quantity solution for the joining
activities and the most favourable of the corresponding quantity solutions of each of the
gart problems; after having found the most favourable of these joint reduced cost coef-
cients to introduce the corresponding group of variables 1n sequence, the improvement
i)n the objective function only occurring when the last of these variables has entered the
asis.
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2) some linear programming procedure which provides at each iteration
both a feasible primal and a dual feasible solution (!), like the logarithmic
potential method by R. Frisch (?) possibly modified as proposed by
G. R. Parisot (3).

The method used should probably make use of the previous common sub-
problem solution in obtaining a new solution to this problem after the objective
function and constants have been modified. Possibly this may best be achieved
by using a parametric programming approach (#) in conjunction with one of
the above mentioned methods.

If as a rule only improved feasible primal or dual solutions of the common
subproblem are sought in the iteration process, then it may be required that
the algorithm used should give a bound upon the possible improvement of the
corresponding primal or dual objective function.

7. INFINITE SOLUTIONS OF THE PRIMAL
AND DUAL SUBPROBLEMS

Even though the overall problem may be assumed to have a finite optimal
solution, the consequences of permitting the primal and dual subproblems to
have infinite solutions (dropping the extended formulation of section 2) may be
investigated with respect to the three possibilities that only y(u), both y and
z(u and s), only z(s) variables may give rise to infinite solutions of the primal
(dual) subproblem.

The general consequences would be the following.

1) The primal and dual masters would have to have columns corresponding
to the infinite directions, which would not be constrained by the requirements

;=1 and t;=1.
> 2

The above constraints would then have to be formulated as

ZSt =1 and zb‘jtj=l

where 3; = Oor 1 and §; = O or 1 dependmg upon whether the ith and the
jth column correspond to a finite solution or an infinite direction, respectively.

() Cf. P. WoLEE, Methods of Nonlinear Programming, in J. Abadie (Editor), Non-
linear Programming, North-Holland Publishing Company, Amsterdam, 1967, pp. 117-119.

(*) R. FriscH, The logarithmic potential method for solving linear programmmg pro-
blems, Memorandum from the Umversuy Institute of Economics, Oslo, 1955.

(*) G. R. PARISOT, Résolution numérique approchée du probléme de programmation
linéaire par applzcanon de la programmation logarithmique, Thesis, Université de Lille, 1961.

(*) Cf. G. B. DANTZIG, Linear Programming and Extensions, op. cit., section 11-3; and
Sverre SPURKLAND, The Parametric Descent Method of Linear Programmmg, Norweglan
Computing Center, Oslo.
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ii) The primal and dual subproblems would have to be solved for these
infinite directions.

iii) As long as there remains an infinite direction to the primal (dual) of a
subproblem there exists no dual (primal) solution to it. Therefore iterations
must be continued between the primal (dual) master and the primal (dual)
subproblems until no further infinite direction may improve the primal (dual)
master.

Only infinite y(x) solutions possible

The finding of infinite primal (dual) subproblem solutions may in this case
easily be achieved in the course of solving the primal phase IT problem. If the
subproblem is not optimally solved before a switch is made to dual iterations,
some yet undiscovered infinite directions may make a feasible dual solution
impossible.

Both infinite y and z (¥ and s) solutions possible

The finding of infinite primal (dual) subproblem solutions becomes then
fairly complicated because of difficulty of finding improved z(s) solutions due
to the size and structure of the problem. In the case of the primal subproblem
the corresponding bounded homogeneous primal subproblem (!) would be

¢Y) Min {(B — s*K)y + (C —s*'L)z |
" Dy +Mz30
Nz=0

4 = —1

—z2z—1

y=20 z20 }==

¥)) = Max {u0 + v0—gql —rl |

e uM + vN —r £ C—5L

uD —q < B—sK

uz0v20qg20r 20 }<0

(*) The structure of this problem seemingly suggests solution by dual decomposition.
As the coefficients B — s*K, C — s*L of the modified objective function have changed
every time when a new solution y, z is required, the previous dual solutions #, g of the
corresponding subproblem(s) are no longer true solutions of them, and therefore it is
impermissible to use the previous vectors of the dual master problem. The previous dual
subproblem solutions may possibly be brought up to date by only making a change in the
g vector, which will only affect the g1 terms of the dual master problem. The vectors of
the previous master problem may then so modified be used in finding an improved solu-
tion to the present master problem.
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Only infinite z(s) solutions possible

As it is the finding of infinite z(s) solutions, which seems to lead to increased
computational difficulties, no greater relief occurs apparently from restricting
the possibility of infinite solutions only to the z(s) variables.

8. SUMMARY OF THE GENERALIZED METHOD

Fig. 4, 5 and 6 summarize the main features of the generalized method.

Specification of data
and structure .of the
Original Problem

/

Min { cx
“  Ax>b
x>0}

\

Primal Phase I Problem call of the
procedure

FINITE VALUED LINEAR
PROGRAMME to solve

Dual Phase 1 Problem call of the
procedure

FINITE VALUED LINEAR
PROGRAMME to solve

Min{Ox+1 y Max { u0 — vl t
@ Ax -+ T y>=b e g4 —yI< ¢
x>0 y>=0}=w u=>0v >0y =e

Primal solution x = x*

and quatsolt A Primal solution u = &’
ution ¥ = u

and dual solution x = x”

w>0 w=0 e <0 e =0

[ e \

no primal and no | |infinite primal no primal solution finite primal and
dual solution solution and infinite dual finite dual solution
X = X' 4~ x"0 solution
0 » 0 and u=u -+ uo
no dual solution 0> o

Primal and Dual Phase 11
Problem
call of the procedure

FINITE VALUED LINEAR
PROGRAMME to solve
Min { ecx
©  Ax>b
x>0
Primal solution x = a®
and dual solution « ==

Figure 4

The method of establishing the solution of any linear programme by considering three
related finite valued linear programmes.
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NoTE : An advantage from a computational point of view may be to replace
the upper bounds upon the original primal (dual) variables by a few cons-
traints.

A formally superflous identity matrix I has therefore been inserted into all
the tables of the following summary. By changing the definition of the vectors y,
v, 1 of figure4 and @, b, ¢, 5, u, v, p, 4, ¥, — X, — J, — z of figures 5and 6 to

SIU[¥[ A [ B T C 1z2Min
s] [ H K L |=][p]
Y I D M 12|Q
M I N 2 |R]
P -1 2 X
q -1 2y
r -1 2 -7
L] LJ

[afbfc] x T y [ z |

Figure 5

. Extension of the finite valued primal phase I or dual phase I or primal-or-dual phase II
hne_arb lprogramme (in bold frames) with upper bounds upon the original primal and dual
variables.

become scalars — I to mean a row vector (— 1, — 1, ..., — 1) and I the corres-
ponding column vector (1, 1, ..., 1) then all the artificial variables y(v) will be
replaced by one artificial variable, and the upper bounds upon the original
primal (dual) variables x(s) by a single constraint of the type

—zsz —% (Zsjs}),etc.
i j

As a necessary preparation in developing a computer programme based
upon the above decomposition mathod, A. C. McKay of the Faculty of
Commerce and Social Science, University of Birmingham, has constructed
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Figure 6

Decomposition of a finite valued linear programme in primal and dual directions_to
obtain a primal and a dual master solved in paraliel and oné or more common subproblems
(information flow).

It is of importance to observe that neither master problems nor subproblems make
detailed use of the transmitted values variables but only use them in formulating new
columns or rows of net effects. Therefore the information flow may be reduced by transmt-
ting corresponding net effects instead of values of variabies wherever this would lead to a
lesser amount of information.
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numerical test examples (!), one of which completes this paper by illustrating
in full detail the functioning of the method. This numerical study was
undertaken in order to provide a test example for a computer programme.

An extremely simplified computer programme to illustrate the main com-
putational aspects of the method has been elaborated (2). An advanced compu-
ter programme by A. C. McKay has recently been successfully tested by him
upon a numerical problem involving formal consideration of two common
subproblems (). A systematic study of factors influencing the practical speed
of convergence of the method is currently being undertaken.

9. CONCLUSIONS

The favourable computational experiences of Beale, Small and Hughes (%)
with their large primal decomposition programme may probably be taken as an
indication that the above generalization of the double decomposition method
by D. Pigot may offer not only an important theoretical but also a forceful
practical tool for achieving a near optimal solution of very large economic
planning systems, especially for optimal international/interregional interunit
economic planning (4).

A great advantage of the method is that the solution of a common subpro-
blem of block diagonal structure may take place in parallel, each block inde-
pendently of the other. A very large economic planning problem containing
reasonable number of joining resource balances and joining activities and a
great number N of diagonal blocks each of reasonable size, may therefore, in
principle, be solved on N computers each solving one block of the common
subproblem plus 2 computers solving the primal and dual master problems.

This should make the practical formulation and solution of very large
economic planning systems possible by only relying upon available computing
resources from high speed computers to pencil and paper.

() Cf. A. C. McKay, Centralization and Decentralization of Decision Making, The
Double Decomposition Method, A Numerical Example with One Common Subproblem
and Finite Optimal Solution ; A Numerical Example with Two Common Subproblems
and Finite Optimal Solution ; University of Birmingham, CREES, Discussion Papers,
ierigls {RggéA, Nos. 14 and 17, Birmingham, Great Britain, 10th August, 1967 and Ist

pril, .

_ (® T. O. M. Kronsi0, Computer Problems in Mathematical Programming (1-9) Univer-
sity of Birmingham, CREES, Discussion Paper, Series RC/A No. 21, Birmingham, Great
Britain, forthcoming.

(3) E. M. L. BEaLE, P. A. B. HuGHss, and R. E. SMALL, Experiences in using a Decom-
position Program, The Computer Journal, Vol. 8, No. 1, April, 1965, pp. 13-18. Recently
this report has been followed by an investigation by P. Broise, P. Huard and J. Sentenac,
Décomposition des programmes mathématiques, Dunod, Paris, 1968.

(9 Cf. T. O. M. KRONSJO, Internationnal(Interregional{Interunit Economic Co-operation
by Linked Computers, University of Birminghan, CREES, Discussion Papers, Series RC/A,
No. 20, Birmingham, Great Britain, forthcoming.
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APPENDIX

A NUMERICAL EXAMPLE WITH ONE COMMON SUBPROBLEM AND FINITE OPTIMAL SOLUTION
by A C McKay®

1 General Remarks Concerping the Numerjce) Calculstions

To achieve greater clarity of exposition all the sicplex tableaux are given in the standard cancmicsl fornl) with empty
spaces for those elements vhich the Simplex Method Usirg ‘dultlplxersZ) makes 1t unnecessary to calculate As the inxtial
solution at one stage or another 1s both primallv and dually infeasible the Self-Dual Psrametric Simplex Alconﬂna) s
arplicitly used The Upper Bounding Technique ' 1% uted to deal with upper bounds o bar denoting s non-basic variable at
1ts upper bound

It w1l] often be necessary to solve B comnon subproblem for which one or both of the objective function and the right
hand side have changed but for which the 1nverse of s previour basis 18 known Suppose the previous problem was
x°=-1n| cx vy |}
Ax ¢+ By 3 b
x30 v20 }

and that x 18 the vector of variables that vere in the basis The problem would be set out as

basic variable x v e ,O conatant
X, -c -3 o] 1 [+]
e -A -3 1 0 -
% o -aserlp -en”? 1 ™
x 1 Alp ! o Iy

If the problem 18 changed to
x, = mp fe x +ay |
Ay ¢+ By > b
%0 ¥30 }

1t 13 clesr that the tableav vith the vector x basic vall be

basic variable x ¥y e %o conntant
x 0 -a+cAlBechl 1 e Ay
o -1 -1 1.
x 1 Al - 0 A

Thus the tableau can be constructed from 2 knowledge of A-l The result vill be extensively used to avold unnecessary
operations

The possibility arises that 3n using an earlier inverse with a nev objective function or right hand side, an upper bound
may be exceeced As a first stage of the simplex rethod 1t would then be necessary to remove this variable from the bas:s
and 1nclude 1t a8 & non-hasic variable at 3ts upper bound

The dus) of the common subproblem 1s not solved becsuss the solution 1a available in the tablea: of the primal prodlem
The simplex multipliers give the selution for the dusl variabler corresponding to the constraints of the original provlem
The values of the dial variables corresponding to upper bounds on esny primal variable are given by the relative cost factor
of a variable wvhich 1s at 1ts upper bound othervise they are zero

In a problem of the size u ed here an optimal solution to the common s bprohlem 18 easily found In larger prodlems 1t
would be necessary onlvy to find a primally feasible solution and a dually feasible solution te the common subproblem 1t a1s
then possible to calcilste upper bounds upon the possidle further improvement of the subproblem solutions these upper
bounds being used 1n the decision of which master problem to enter

® The Swedish Counc ) for Socral Pe carch ha, .pen ored thir rescarch bv a prant avarded to T O M Krons 38

{mversit/ of Rirmingham under vhose upervi.ion it has been undertaken

Cf G 8 Dant xg! iresr ngru.r.mmi an " ersion Princeton Uriversity Yress Princeton HNev Jersey 1963 seetion 5-)
>

2) Cf opus cit section 9-1

3)

b Cf opus cit sectian 18-1

Cf opts €3t section 11 3
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2. _The Problem Copstructed for Test Calculations

To investigate tbe behaviour of the generalization of the double decomposition method elaborated by T.O0.M. Krons j8
in the preceding paper the folloving numerical example vas constructed.

; [xy o, ¢ vy oy, o3¢ 2, 2, |
IR IR ST F I £ TR (U Y
Qx'-xZOb,-yZOy,-&'-z:a
-y -y, ¢z -2z,

E ARG SR TSP 4

T, -2,

#,20,x,20, ¥,20,5,20,520, £,20, 2,20 }

™mn
Xa¥»3

w

o~ N Fw

wvhich kas the optimal solution: x-[x,]*lh y=ly }=(3 z= ’.‘1. s
x, o] Y, 0 zz’ 4]
Y3yl 19

The Extended Formulation of the Prodlem

An extended formulation is used, where bars denote upper tounds upon variables. The notation follows thet of
T.0.M. KronsjB as given in the preceding paper 3-(1), and thus

a=(10 10) u={20 20} W=(10) a=(1 1) B=(1 1 -1) c=( 1 -1)
T R R g PR
RN
N={ 1 -2) Re(0}
2
5-[20
20
20
(3

Figure 1: The solution process (see facing page)

.__The Sojution {11}

Although the celculations are here set out in sequence, they can actually te carried out in parallel as shown in
Figure .l. The transfer decision in Step ) 1s made cn the basis of primally and dually fessible solutions to the Common
Subproblem.

Step O Initia)l Values
favm100 s*®w (11) pfemax (-a+25%0) = (20) Neme-100 z}a [z] ! e mex (R~ N2',0) = (2)

2
Step 1.0 Transfer Decicion

(s} Commcn Subpreblem as in 3-(11)-(12), thus



CENTRALIZATION AND DECENTRALIZATION

STEP O
INITIAL
SOLUTION
I \
PRIMAL MASTER TRANSFER DECISION DUAL MASTER

PROBLEM COMMON SUBPROBLEM PROBLEM

STEP (N

S‘FEP 2

STEP 3.4

STEP 4
FINAL
SOLUTION

Figure 1

107
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-ar® = gy (100, #1205, ¢ (1= 3)y ¢ (1 -0)y, + (-2 -2)y, |

bl b 2 ~ Y, 32+2
% 2, ty, cyyried

-7, 3 -20

R 7 3 -2

¥y 3 -20

b, 20b,20 ¥, 30 v, 30 73201}

basic variable by by n Y2 ¥ LN ey constant
upper bounds 20 20 20
-ar® -10  -10 2 -1 3 0o o [
e -1 o 1 1 o 1 [] -4
ey o -1 20 =) 1 0 1 -5
~ar® -10 -1 o -2 4 o 1 -5
e LRS! o H ) 1 3 -1
¥ o o -}
-df°(=an®) 0 6 0 T -~ -0 -k &
5 -1 - Y
¥1 o -l
i i
{b)_ Primal Subproblem
The objective function 1s grven by 3-{15), thua

-df"t e 60 +20+2-100 « ~18 <O hence the decision 1s teken to

TRANSFER IRFORMATIOR 10 THF_ PRIVAL MASTER

consisting of b* e b: - li v - y} -
b3 0

in the form of the more ub® ¢ By?) = {65 ¢ 3} = (673
S bl

compact information
i H

S, b

O © win

E

{c) _Dual Subproblem

The objective function 1s ,ven by 3={17), thua

~dh'® @ 60 +9 - 40 + 100 = 129 >0 » hence the decision 1s taken to
TRANSFER INFORMATION TO THF DUAL MASTER
consisting of u' = [n‘: u;) e (104) gl (qi gg qg) = (000)
1n the form of the more compact information

{un uwo-qly) « (6-24 24 -0) « (6-24 24)

Step 2.1 Prinal Master Problem as in 3-{3), thus



basic variable . ., X, x, L, L ., ey constant
upper bounds 20 20
4 10 -10 =} - =874 o o 0 o
e, -1 [ -'_; 1 o o -3
e, © =2 -2 1 1 ©°o 1 o -
e, ¢ o6 ¢ o -* o 0 1 =
? 210 -0 =1 =) 0 3 o -87) 873
e, - e | z
(A 4 -3 -2¢ ] ° o ) 1 -5
v, ° o o = 1
t -0 -4 LIS ° o -} -8 %
e, ) -} =7 6
x, o = 3
T (] [ -1 1
§tep 3.2 Dua) Mester Prodles as 1n 3-(7), thus
oax
b Toopar 7280 4 200 s 21 -0, |
? B €10
=1+ 6)1.‘ veoor £ 1
o2 -2 R P
'., 3
T30 v £,3¢ 120 H
basic variabdle t, v r, r, e, e, €, constant
upper bounds 10
14 9 [ 20 20 [ o [+] [
€, 5 b} -3 0 b} o o 1
L -2k 2 ] =1 o 1 [+ -1
L 1 ° o [} ° o 1 1}
b [} o 20 20 ] [} -9 -9
e 6 1 ¢ o 1 0o =5 -4
e, 0 o 1 24 23
t, ° e o 1
bk o 20 [ 20 20 0 ~109 -89
T, =1 ] 5 1]
e, o 1 24 23
t, [} [] 1 b
Transfer Decision

£t

CENTRALIZATION AND DECENTRALIZATION

(8) Cormon Subproblem (The inverses

Modified objective function 10b; +

106y + (1 - Dy + (1 4+ Dy + (=1 ~ 3)y3

ID(OU
pe (00
v = (88}
f= 9

= [0)
= (20 0}
{109)

L I
.

109

of previous problems eare used to update the modified objective function and

constants in common subnroblems, and

the entering column in naster
vroblens)

Pasic varieble b, b, v, ¥, ¥y LN e, constant
upper bounds 20 20

-as® n -5 o -3 -1 a0 -5 -5

by ] [ 2 T R L B -3

v, S 3
-ar%(man®) -7 -4 o -z 0 -3 - -3
Y, 2 3 15

Y,y ) [ 8

Mod)fied constants
(2 = 20)
(1 ¢ 20)
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() Prima) Subprodies
car s 22.04u0-83 = -0} <0 hewce

TRANSFER IFFORMATION TO THE FRIMAL MASTER
consisting of Sy y%  f0+3] = 3
L 33
2

{c) _Dual Subprobiem
= -‘-;¢22~oo109 = 108§ >0  hence
TRANSFER INFORMATIOS TO THE DUAL MASTER
consistiog of (whdiwlo-of) o (3-5iYy-0) = G -4 )

Step 2. Master Problem
basic varieble 8, s, L x, t; t, e, e, constant | Addational coiumn
(origical form)

upper bounds 20 20
t -0 -1 o -3 o 7} o -} -8 90 (3+00 208,
e -0 r -} -7 € (33 200,
x, & o -3 -} ; {52 - ko),
t, 1 o o -1 1 1t,
S 10 -5y - 3 o o o 4 -62) 6of
« PR B | 22
t, o -3 -g i
t o g -4 i
4 |10 -~ - -1 -6 o o o -23 23 e = f09)
e, 1 0 -53 50 p = {00)
t, [} 0o -1 1 v = (23)
e, 0 1 -n 7 r = 23

Step 3. Master Problem
basic variadble t, t, v L T, LN e, e, constant Additional colusn
{original fors)

upper bounds 10
h 0 -1081 20 o 20 20 0 -109 -89 (2-0+ 1,
5 3 1 o 5 b (2« i,
€ 16 o 1 2 23 =3 i,
t, 1 4 [ 1 1 1t,
h [ e -4 2} 20 -3 o 13 L
t2 5 o 4 ]
e, 3 1 0% 82
) 3 o -} 4
S 18y ¢ c 2 20 o o 1 g c = (0
t, a o 1 1 z = {00}
€, o 1 8 7 o = ()
€ 1 ] -3 i Y l;

Step 1.2 Transfer Decision
(a) Cormon Subproblem

Modified objective function 10b, + 10b, + (1 = Oly, + (1 + Qly, + (-1 - Oly,
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KEOTSP0S-6-R1

basie varieble 1.5 b2 7 vz v3 el e2 constant Modified constants
upp * bounds 2
-at°® -9 -9 o -1 c -1 -1 -3
v, -2% -1 © 3 1 2 1 -5 2-9
¥, -1 1 0 -2 1-90
~ar%(=an°®) o % o -4 -3 -0 -Y 253
b, -1 -3 2
¥, 0o -3 i

{v) Prinal Subproblem
carm = 2534040-23 = 250 henre
TRANSFER ND THFORMATION TO THE PRIMAL NASTER
{c) Dual Subdproblen
an = 253+0-0-2 = 1650 nemce
TRANSFER INFORMATION TO THE DUAL MASTER
consisting of (uht!ulq - ¢%5) = (3 -2siizsi-o) = (3 -25) 25i)

Step 3.3 Dusl laster Problem
basic variable t; T, %y v r r, e e, e constant{ Additional colum
Spper bownds ) {original form)
h 183 © -6 o 20 20 0 o 3 3 0 -0+25he,
t, 1 [} o 1 1 (o ¢ ey
e -173 a 1 8 7
2 (o - 2581
& u 1 o i ’:’t:
n 6} o 0 L 16 20 4 o 4 43 3
v - o i c= [
2
e ¥ 1 sh o = (80)
ry b o - i = = (1)
Step 1.3 Transfer Decision b= g
{a) Common Subproblem
Modified objective function 10b, +10b, + (1 - Oly, + (1 + Oly, + (-1 = 0)y,
basic variable by b ¥y ¥, Y2 e e constant Modified constants
upper bounds 20 20 20
Y]
dt”(=dn”) o -2 o -4 -2 -1 -!{ g
3, o S i 2-4
b o -} H 1+4%
{b) Primal Subproblem
Y ocarma Baosn-23 s B0 hence

TRANSFER INFORMATION TO THE PRIMAL MASTER

consisting of

{e) Dusl Subprodlem
.‘hm.%‘o-o’%so hence

R

TRANSFER NO INPORMATION TO THF DUAL MASTER
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Step 2.3 Prisal Master Problem

basic variadble 8, ., X, X, v, t, L, e e, e constant | Additional Column
{or2ganal forem)
upper bounds 20 20
r ~10 ~10 -1 -1 -6L} [ ui 0 0 =23 23 (1§ +0 e bty
e W 1 o -3 50 G ey
(s -8
t, 1 o o -2 1 3
e, we o 1 -1 T 1ty
. TR ~23 ~1327
4 10 ~92 2 -d - 0 0 0 -f a3y 1m
93 1613
e Sed 1 8 1653 262
t, 4 o g - H
t, -4 o = -H H
4 -0 % o 4 -1 4 0 o -4 =13 15 s = (01)
e, 1 -3 -8 1 » = (00)
v o - ¥ T voe )
ty o 0 = 1 r = 15
Step 1.4 Transfer Decaision
{s) Cozmon Subproblem
Modified bbjective function 10b, ¢ 20b, « (1 = 1)y, + (1 « l)y7 ¢ (-1 - ))y,
basic variable LN b, v, 7, 7, e, e, constent Modafied constants
upper dbounds 20 20 0 unchaaged
~ar°(=an®) o -5 o =4 -2 -0 -5 5
b, DU i
Ny o H
{b) Primal Subproblem
~df'" ®» S+0¢8~-13m0 hence
TRANSFER KO INFORMATION TC THE PRIMAL MASTER
{c)} Duai Subproblem
dh‘“'5~6~0-%-£>0 bence
TRANSFER IKFORMATION TO THE DUAL MASTER
consastang of (wM W - 9%y) = (5 -25 ,25=-0) = (5-2525)
Step 3.4 Dual Master Problem
basic variable t, L, t, t, v LY T, e, e e constant| Additional Column
(oraginal form)
upper bounds 10
h 63 o0 o -1 16 20 oo 4 L (2 =0+ 25),
Y, i -t o 3 i =1 5
; & 5 258 | oo EREL
t, i ¢ o - i LN
4
n 1 o & Qo S 20 13 5 o] 17 12 c = (0)
t, 4 o % % z = (50)
e, 5 1 4 v a = (7)
. 3 0 4 | b |ae o
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Slop 1.5 Transfer Decispiop
(o £ o
Hodified objective fnction unchanged

basic variable LU N S S e, constant modified constants
upper bounds 20 20 20
~ar° (=) o -5 o - -2 -0 -5 0
b, L S | o 2-3
n [ 3 1+%
{v)._Primel Supprobies
-~af''*ea 0+40+30~13 @ -3¢0 hence
TRAESITR_ INFORNATION TO THE PRIMAL MASTER
comnisting of gx k3 g’ o Qe « (3
2 3 3
v 6 5
{s)_Puad Bubprobles
Q™ « 0eT+0~7 = O hence
SRANEYFR NO JNVONMATION TO THE DUAL MASTER
K} Master Problem
basic varisble o 8, XX ottty t e e, e constant Ad:::ﬂi:d
upper tounds 20 2 {original form)
£ “10 - 0 -} -5 -3 0o 3 o0 -} -1 15 (340« %),
o -2 1 -} -B 1 3 .S,
. 0 - - 1 (6 -0,
t, 1* 0 0 2 1 lt,
4 -0 -4 ¢ -} -8 -4 -3 o o -} 10 12 s e 08)
e, 1 - =10 9 » = (00}
x, o -1 -2 L v - {10
o o ¢ 2 1 £« 22
Step 1,6 Trapsfer Decition
f = n » 12~12 e O bence go to Btep b
Step b _Final Solution
X 3 solutions pending to each ‘i are given vby:
for primel direction for dual direction
By by e ¥y Yy 2y g Sy S U Y Py Py 4 9 9y
t, 4o 2 §o o 22 t, 2 1 10 &2 0o 0 0 O
t, 00 0 180 15 200 t, © 3 3 o0 0o 0 0 o
t;, 3o o o o0 to t; 0 0 1040 0 0 0 0
¢, 00 o 30 0 50 t, 0 3} 10 50 0 0 o O
{i)} Achieved primsl feasible solution {ii) Achieved dus)l feasidble solution
a = = fo0) I R CH RS ICH N )
J
v = it = (00 wonondd e §(3]) e 4005) ~ (v2)
i N
e = e - (o) ¢
Y
x = e (L0) P o= ;,-\; = §(00) + }{00) = (00)
J
oo i . 300 a = 12’ « §0oc)+jf000) = (poq]
Iy -3
;-zz‘:‘;-lse) r= = [oo)
i



