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CENTRALIZATION AND DEGENTRALIZATION
OF DECISION MAKING

THE DECOMPOSITION OF ANY LINEAR PROGRAMME
IN PRIMAL AND DUAL DIRECTIONS

— TO OBTAIN A PRIMAL
AND A DUAL MASTER SOLVED IN PARALLEL

AND ONE OR MORE COMMON SUBPROBLEMS —

by T.O.M. KRONSJÖ *
University of Birmingham, Great Britain

Résumé. — La méthode de la double décomposition d^un programme linéaire ayant
une solution optimale finie de M. D. Pigot est généralisée au traitement de n'importe quel
programme. On démontre que la méthode peut être employée en faisant des itérations simul-
tanées ou séquentielles dans les directions primale et duale et que> sous réserve de certaines
conditions,, la méthode converge en un nombre fini oblitérations.

On peut signaler que Vapplication à la résolution de problèmes non linéaires convexes
séparables a été entreprise par Vauteur dans une autre recherche.

On peut attendre des résultats intéressants de l'application de la méthode de décomposi-
tion proposée à la résolution de gros problèmes de programmation convexes ayant une struc-
ture triangulaire ou quelqu*autre structure à Vaide d'un réseau de calculateurs interconnectés.

In this investigation the first proof is given that the double décomposition method
proposed by D. Pigot (*) may be generalized to deal with any type of linear programming
problem by considering two or three related linear programmes each of which may be
decomposed into a primai and a dual master and one or more common subproblems,
the solution of which may be undertaken by simultaneous or sequential itérations in pri-
mai and dual directions, and that, if certain conditions are observed, the method will
converge in a finite number of itérations to the optimal solution.

The generalization is based upon the following concepts of the author :
i) That any linear programme (no matter whether it has some type of solution or not)

may be evaluated by the solution of two or three related programmes with finite optimal
primai and dual solutions;

* This research was supported by the Swedish Council for Social Science Research,
Stockholm, Sweden.

0) D. PIGOT, Double décomposition d'un programme linéaire, in Actes de la 3e Confé-
rence Internationale de Recherche Opérationnelle (Proceedings of the 3rd International
Conference on Operational Research held in Oslo, 1-5, July 1963), Dunod, Paris, 1964,
pp. 72-78.
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ii) that any linear programme with finite optimal primai and dual solutions, may be
extended into an equivalent extended problem to which initial feasible primai and dual
solutions may easily be found;

iii) that the extended problem may be constructed so as to prevent the possibility of
infinité solutions of some subproblem obtained by disregarding certain constraints ;

iv) that the primai and dual mas ter probîems may contain activities of their own, in
which case the simplex multipliers must form a dual feasible solution to the corresponding
dual constraints, bef ore information may be transferred from the masters to the common
subproblem(s);
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This linear economie problem involves problems of centralization and decentraliza-
tion of décision making, a convergent scheme for which is the aim of the proposed method.

v) that obtaining bounds upon the further improvement of the primai and dual feasible
solutions of the common subproblem(s) may be useful in deciding whether an improved
primai or dual feasibîe solution, or both, shouîd be sought to this (these) problem(s);

vi) that formai considération of several independent common subproblems in certain
cases may be useful;

vii) that not only sequential but also simultaneous itérations in primai and dual direc-
tions may be vmdertaken and that the process converges to the optimal solution in a finite
number of itérations.

As for certain purposes an economie System may be approximated in the form of a
linear programmîng problem of large dimensions, this décomposition procedure is of
profound theoretical and practical importance in indicating a possible System for optimal
planning based upon a combinat ion of central price parameters [cp. the Dantzig-Wolfe
primai décomposition method 0>] and central quantity parameters [cp. the Bender's dual

0) G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey, 1963, Chapter 23.
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décomposition method (*)]. An economie interprétation of the process is given in Fi g. 1
and 2.

It is of interest to observe that another decompositional scheme in primai and dual
directions may be devised which leads to a common master and a primai and dual subpro-
blem and that both of these schemes may be generalized to nonlinear convex separable
programmes (2).

0. THE PROBLEM

It is desired to establish the existence or non-existence of a finite or infinité
optimal primai and dual solution of any linear programming problem by
decomposing some related problems with finite primai and dual solutions into
a primai master problem and one dual master problem with one common
subproblem. Any linear programming problem may be considered to be a
special case of the primai problem (3).

(1) Min {Ax+By+ Cz
x,y,z

Hx+ Ky+ Lz > P

Dy + Mz ^ Q

Nz> R

x > 0y^ 0 z > 0 }

with the corresponding dual problem
(2) Max {sP + uQ + vR \

s,u,v

sH ^ A

sK + uD ^ B

sL +uM+vN ^ C

s^0w^ 0v^ 0 }
It is not known whether some primai or dual solution exists at all to both

problems.
For the solution of the above problem, the author establishes the first gene-

ralization and proof of convergence of the décomposition method proposed
and practically tested by the French operational analyst Daniel Pigot (4).

The generalization and proof of convergence are based upon the following
concepts of the author.

1. Any linear programme (no matter whether it has some type of solution
or not) may be evaluated by the successive solution of at most three related

(0 Cf. M. L. BALINSKI, Integer Programming : Methods, Uses, Computation, in
Management Science, Vol. 12, n° 3, Nov. 1965, pp. 271-274.

(2) Cf. Forthcoming papers by the author in University of Birmingham, CREES,
Discussion Papers, Series RC/A, mimeographed, Birmingham, Great Britain, 1968.

(3) The most important special case is when the matrices H and N with corresponding
vectors x, v, A and R, do not exist.

(4) D. PIGOT, op. cit. in the introduction.
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linear programmes with finite optimal primai and dual solutions (cf, section 1),

2. Any linear programme with finite optimal primai and dual solutions,
may be extended into an equivalent extended problem (*) to which initial
feasible primai and dual solutions may easily be found. The conséquences of
this theorem are that the same solution method may be used from the initiation
of computations to the obtention of the near-optimai or optimal solution and
that the proof of convergence probably is facilitated (2) (cf. section 2).

3. The extended problem may be constructed so as to prevent the possibi-
lity of infinité solutions of some subproblem obtained by disregarding certain
constraints (cf. sections 2 and 3 together with the note of section 8).

4. The décomposition of the linear programme may lead to a primai and
a dual master which contain activities of their own, in which case the appro-
priate simplex multipliers must form a dual feasible solution to the corres-
ponding dual constraints, before information may be transferred from one
master to the common subproblem(s) and to the other master (cf. section 3).

5. The possible usefulness of obtaining bounds upon the further improve-
ment of the primai and dual feasible solutions of a common subproblem in
deciding upon whether an improved primai or dual feasible solution or both
should be sought (cf. section 4).

6. Formai considération of several independent common subproblems
(cf. section 5).

7. Not only sequential but also simultaneous itérations may be undertaken
in primai and dual directions and the method stiîl be proven to converge to the
optimal solution in a finite number of itérations (cf. section 3).

1. ESTABLISfflNG THE TYPE AND SOLUTIONS OF ANY LINEAR
PROGRAMME BY THE SOLUTION OF TWO OR THREE DERIVED
LINEAR PROGRAMMES WTTH FINITE OPTIMAL SOLUTIONS

Theorem. The optimal primai and dual solution, if any, of any linear
programme with primai

(1) Min { ex |

Ax > b

x> 0}

(0 When feasible primai and dual solutions have been found without using variables
or constraints of the extended problem, the extended formulation may be dropped, if so
desired, with the conséquence that the various types of subproblem may have infinité
solutions, though the complete linear programme may not have any.

(s) Note that the primai and dual objective functions of a subproblem then always
assume the same optimal value.
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(2)

may be established by the sequential solution of three related primai (dual)
linear programming problems with finite optimal solutions, viz. :

i) the primai phase 1 or dual bounded homogeneous problem to establish
the existence of a feasible primai or an infinité dual homogeneous solution;

ii) the primai bounded homogeneous or dual phase I problem to establish
the existence of an infinité primai homogeneous solution or a feasible dual
solution ;

iii) if both a feasible primai and a feasible dual solution exists then continue
by solving the primai and dual phase II problem.

The proof will be outlined in the continuation.

i. The primai phase I or the dual bounded homogeneous problem involves
minimizing the sum of artificial variables y to establish whether the primai

m

problem has a feasible solution or not. The sum of artificial variables V y( may
£ = 1

be denoted by the inner product \y of the row vector 1 = (1, 1, ~.5 1) and the
column vector y = (yu y2i ..., yj.

(3) Min {0 x + ly j
*,y

Ax + y 7* b

(4) = Max {ub |
«

uA < 0

u < 1

u > 0 } =
= w

Définition of max (a, b) : If a, b, c are vectors with éléments af> bh ct

(i = 1,..., ni) we define c = max (a, b) to mean that ct = max (ah bt).
As the primai problem (3) has a feasible primai solution

jc = O

y — max (b, 0)
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and as the primai objective fonction may never become négative, there exists
a finite optimal primai solution (*)• The dual (4) must therefore have the same
finite optimal dual solution (2).

The dual problem (4) may be termed the bounded homogeneous problem
as it is related to the dual homogeneous problem

(5) Max {ub \
ii

uA < 0

u > 0 }

An illustration of the homogeneous and the bounded homogeneous pro-
blem is given in fig. 3.

Figure 3.
A homogeneous problem and the corresponding bounded homogeneous problem.

RELATIONSHIPS BETWEEN THE BOUNDED HOMOGENEOUS PROBLEM AND THE HOMO-

GENEOUS PROBLEM

If no solution exists to the homogeneous problem for which the objective
form is greater than zero then no such solution exists to the bounded homo-
geneous problem, because its solution space is part of that of the homogeneous
problem.

If one or more solutions exist to the homogeneous problem for which the
objective form is greater than zero, then one such solution must exist to the
bounded homogeneous problem, because on the basis of any particular solu-
tion u = w* of the homogeneous problem, a solution may be constructed to
the bounded homogeneous problem, if w* < 1 by using the homogeneous

0) Cf. G. B. DANTZIG, opus cit., section 6-4, Theorem 2.
(*) Opus cit., section 6-4, Theorem 3 and section 6-3, ThTheorem 1.
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solution else by dividing the w* vector by its largest element ||w*|| ; the objec-
tive form of the bounded homogeneous problem must in either case similarîy
be greater than zero.

Conversely, if no solution exists to the bounded homogeneous problem
with the objective function greater than zero, the same must be true of the
homogeneous problem because of the following reasons.

The homogeneous problem consists of points u € U which either belong to
the bounded homogeneous problem, i.e. the points u — w+ € U+ or do not
belong to the bounded homogeneous problem, i.e. the points u = u" € U~.
No solution with the objective function greater than zero exists for points
belonging to the bounded homogeneous problem. Any solution point w~ of
the homogeneous problem which does not belong to the bounded homogeneous
problem may be obtained by multiplying any one of the points u+ = w+(w")
of the bounded homogeneous problem which lie upon the ray joining u~ with
the origin by a positive factor k = u~ju+. If the objective function correspon-
ding to any u+ point is nonpositive the same must then be true about any u~
point, as the value of the objective function of the point u" is that of any cor-
responding u+ point times the positive factor £:, i.e.

u'b = (u'fu+)u+b = ku+b

Finally, if a solution u° exists to the bounded homogeneous problem for
which the objective function is greater than zero, 0 < u° ^ 1, u°A ^ 0,
u°b = w° > 0, then the homogeneous problem has a solution u = ku° where
k —> oo for which the objective function becomes infinitely large, because

Max { ub = ku% = kw° | uA = ku°A < 0, u - ku° ^ 0 } =

= Lîm{Jfew°| w°> 0 } = oo

CONCLUSIONS FROM SOLVING THE PRIMAL PHASE I OR DUAL BOUNDED HOMO-

GENEOUS PROBLEM

Case i — a
The optimal objective function w > 0 implies no primai feasible solution,

and a dual infinité homogeneous solution.

Case i — b

The optimal objective function w = 0 implies a primai feasible solution,
and no dual infinité homogeneous solution.

ii. The primai bounded homogeneous or dual phase I problem

Independently of the outcome of problem /, we may proceed to solve a
problem ii, which is usually part of the primai phase II problem, but hère
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considered independently as a bounded problem, with finite optimal primai
solution to assure that a finite optimal dual solution wiîl exist.

(6) Min { ex |
X

Ax ^ 0

x > 0} =

(7) = Max { wO — v\ |
tt,v

uA — v ^ c

u > Ov > 0 } =
= e

The above primai bounded homogeneous problem (6) is similarly related
o the primai h omogeneous problem

(8) Min{ ex |
X

Ax > 0

x> 0}

and the conclusions above concerning the relations between the bounded
homogeneous problem and the homogeneous problem apply with appropriate
changes.

The dual (7) of the primai bounded homogeneous problem (6) is identicaî
with the dual phase I problem.

CONCLUSIONS FROM SOLVING THE PRIMAL BOUNDED HOMOGENEOUS OR DUAL

PHASE I PROBLEM

Case ii-a

The optimal objective fonction e < 0 implies a primai infinité homogeneous
solution, and no dual feasible solution.

Case ii-b

The optimal objective fonction e = 0 implies no primai infinité homo-
geneous solution, and a dual feasible solution.

CONCLUSIONS FROM THE SOLUTIONS OF BOTH PROBLEMS

Case i-a and H-a

Neither a primai nor a dual feasible solution.
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Case i-a and U-b
No primai but an infinité dual solution.

Case i-b and ii-a
An infinité primai solution and no dual solution.
If any of these cases apply the solution of the linear programming problem

is concluded. Finally :

Case i-b and ii-b
Both a primai and a dual feasible solution

implies that there exists a finite optimal solution which may be obtained by
solving the following problem iii.

iii. The primai or dual phase II problem

This problem is identical with problems (1) and (2), and wiil give the finite
optimal primai and dual solutions.

Thereby the proof of the theorem is completed.

2. INITIAL PRIMAL AND DUAL SOLUTIONS
OF A LINEAR PROGRAMME

Theorem. A linear programme with finite optimal primai and dual
solutions, x°, M0

(1) Min { ex |

x > 0 } = cx° =

(2) = Max {ub |

uA < c

u ^ 0 } = u°b

to which we find difficultés in immediately constructing feasible primai and
dual solutions may be extended into the linear programme

(3) Min { ex + ûy \

Ax + y^b

— x ^ —x

x^ 0 y^ 0} =
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(4) = Max {ub —• vx \

uA —v < c

u < ü

u > 0 v > 0}

which has the same optimal x°9 ifi solution if the vector of constants x is greater
than the x° vector

(5) x > x° > 0

and the vector ü greater than the w° vector

(6) ü > u° > 0

To the extended problem a feasible primai solution may be found by
putting

(7) x = x* where 0 ^ x* < x

y = y* = max (é — ^fx*; 0)

and a feasible dual solution by putting

(8) u = w* where 0 ^ w* < £

ÏJ = ÏJ* = max (— c + u*A, 0)

Proof. The primai optimal solution of (1) x = x° together with y = 0 is
because of (1) and (5) a primai feasible solution of (3) with the primai objective
function equal to that of (1). The dual optimal solution of (2) u — u° together
with v = 0 is because of (2) and (6) a dual feasible solution of (4) with the dual
objective function equal to that of (2). As the optimal primai objective func-
tion (1) equals the optimal dual objective function (2) it follows that (3) equals (4)
for the feasible primai and dual solutions used, which therefore (l) must be
optimal primai and dual solutions. Consequently the extended problem has
the same optimal x and u solution(s) as the original problem.

FEASIBLE PRIMAL AND DUAL SOLUTIONS TO THE ORIGINAL PROBLEM

If, as will be the case in the following, some solution method is used which
alternately solves the primai (3) and the dual problem (4), then feasible primai
and dual solutions to the original primai (1) and dual problem (2) will be
available when all y = 0 and all v = 0.

(x) Conséquence of section 6-3, theorem 1, in G. B, DANTZIG, op, cit.
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3. DECOMPOSING THE PROBLEM ÏNTO
A PRBMAL AND A DUAL

MASTER WITH A COMMON SUBPROBLEM

The results of the preceding sections 1 and 2 may be used to transform the
problem of section 0 into some related linear programmes viz. the extended
Primai Phase ƒ, the Dual Phase ƒ, the Primai or Dual Phase II problems with
feasible prima! and dual solutions. These problems are of the type

(1)

Min {sa + üb 4- vc

a

Ax H

Hx -

- x

x^ 0

Y By H

V Ky H

V Dy H

— y

y>0

r Cz

- Lz

r Mz

- Nz

— z

z

1

> Q

> R

^ — y

^ —z

> 0 } =

(2)

== Max {sP + uQ + vR —px —qy —rz .

s < s

u < ü

sH —p ^ A

sK +uD —q < B

sL +uM +vN —r ^ C

s ^ 0 M ^ O v > 0 / > > 0 q > 0 r ^ O }

where s, ü, vy x, y, z may be considered to be nonnegative vectors of upper
bounds upon the corresponding vectors of variables.
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A problem of the above type may be decomposed into the primai master
problem

(3) Min lia + Ax + y (üb1 + vcl + Byl + Cz% \

«... [ ^
a + Hx + V (Kf + Lz% > p

a > O x ^ O *. > O 1 =•i-
(4)

and

(5)

= Max { sP —

s

sH —

s(K/

s^ 0

the primai subproblem

P

Min { üb + üc +

6 ^ 0

c

c ^

> 0

(B-

0

+ w

+ w

w

-skK)y

+ Dy

—y

y>

1
< s

< A

^ùbl

unrestricted }

+ (C-

0

-/L)z —

+ Mz>

+ Afe ^

z ^

?^£+ Cz

T V f e |

Ô

R

— y

— z

0} =

= — d / < 0

No infinité solutions may exist to this subproblem (the coefficients of b
and c in the objective function being nonnegative, and ail other variables
being bounded).

A feasible or optimal primai solution of the primai master is assumed to
be known.
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with corresponding simplex multipliers, representing an infeasible or optimal
dual solution

The objective function ƒ of the primai master equals the corresponding
simplex multipliers times the right hand constants (*)

(6) ƒ - sak + Axk + y (übl + vcl + Bf + Czl)tki - skP —pkx + wk

The problem may also be decomposed into the dual master problem

(7) Max [ y (sJ'P + uJQ —pjx — qjy)tj + vR — rzviax f y
l J

!*£, + uJM
r

J
0

V

h vN — r < C

(8) = Min {vc + Cz + m \

(sJL + ujM)z + m ^ sjP + uJQ —pjx — qjy

c +Nz ^ R

— z ^ —z

c ^ 0 z ^ Omunrestricted }

(0 This may be demonstrated on the basis of the linear programme

Min { c'x' + c"x" | A'x' + A!'x" = b, x' > 0, xT = 0 },

where x' and x" dénote respectively basic and non-basic variables in the current itération
with prime and biss indicating the corresponding parts of the vector c and the matrix A.

The values of the basic variables are x' = A'~xb and of the simplex multipliers
« — ç'A'"1, The primai objective form is c'x' = c'A'~xb = ub, which is the simplex
multipliers times the right hand constants.

Alternatively, this may be demonstrated by consi dering the revised simplex method,
in which the value of the basic variable corresponding to the objective function is obtained
by summing the product of each simplex multiplier times the corresponding original right
hand side constant. As the simplex multiplier of the équation corresponding to the objec-
tive function is 1 and the corresponding original right hand constant is 0, the above equa-
lity follows.
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and the dual subproblem

ml(9) Max { s(P — Lzl) + u(Q — Mzl) — px — qy
s,u,p,q

S < S

u ^ ü

sH —p ^ A

sK +uD — q < B

s> 0 w ̂  0 p ^ 0 q ^ 0 } =
= dA ̂  0

No infinité solutions may exist to this subproblem (the coefficients of p
and q in the objective form being non-positive, and all other variables being
bounded).

A feasible or optimal solution of the dual master is assumed to be known

tj, v', rl

with corresponding simplex multipliers representing an infeasible or optimal
feasible dual solution

c\ z\ ml

The objective function h of the dual master equals the simplex multipliers
times the right hand constants

(10) h = y (sjP + uJQ —pjx — qjy)t) + vlR — rlz - lcl + Czl + ml

s

It is advantageous to note that every inequality of the primai or duai
master may be formulated as an équation by subtracting or adding a nonnega-
tive slack variable.

The dual constraints corresponding to the v, r and slack variables of the dual
master are the relations c + Nz > R, — z ^ — z, c > 05 z ^ 0, which are
part of the constraints of the primai subproblem. Therefore the simplex mul-
tipliers c1 and z1 of the dual master may be used to construct an improved
solution to the primai subproblem, provided that none of the v, r and slack
variables is a candidate for introduction into the basis of the dual master.

The dual constraints corresponding to the a, x and slack variables of the
primai master are the relations s ^ s, sH—p < A, s > Q,p > 0, which are
part of the constraints of the dual subproblem.
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The simplex multipliers satisfy the dual constraints, except forthose dual
constraints which correspond to variables which are candidates for introduction
into the basis (1).

Therefore, the simplex multipliers sk and pk of the primai master may be
used to construct an improved solution to the dual subproblem provided that
none of the a9 x andslack variables is a candidate for introduction into the basis
of the primai master.

In the case that only improved feasible solutions of the primai and dual
masters are sought, the above conditions may be satisfied by slight modifica-
tions of the linear programming algorithm used.

For an outline of the algorithm in greater detail the following définitions
are required.

The primai common subproblem is defined as the problem obtained when
z = zl and c = é have been inserted into the primai subproblem (5) and all
constant terms in the objective function dropped, i.e.

(11) \

b + Dy> Q — Mzl

— y > — y

b>0 y^O } = — d / °

which equals in value that of the dual common subproblem similarly defined as

0) Cf. G. B. DANTZÏG, op. cit., section 8-5.

The dual constraints corresponding to the linear programme given there may be for-
mulated as

uPj< c7 (j= 1,..., n)

where u is a row vector of unrestricted dual variables. The reduced cost coefficient of a
variable is according to (16)

c, ~ e, — ITP,

A variable which is not a candidate for introduction has a nonnegative reduced cost coef-
ficient, hence

c, — ni», > Ö
or

•nPj < Cj (y — n o n candidates for introduction)

A variable which is a candidate for introduction will have a négative reduced cost coef-
ficient, hence

d — nP, < 0
or

nPj > a U ~ candidates for introduction)

It foHows, that the simplex multipliers will only satisfy those dual constraints for
which the corresponding primai variable is not a candidate for introduction into the basis.
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the problem obtained when s = sk and/? = pk have been inserted into the dual
subproblem (9) and ail constant terms in the objective function dropped, i.e.

(12) Max { u(Q — Mzl) — qy \

where

(13)

U

uD

uTï 0

—

— q

q

df° =

^ u
< B

> 0

:dh0

-skK
\

Further définitions of importance for following the remaining of this
section are

— dƒ optimal value of the primai subproblem

— d f° optimal value of the primai common subproblem
— à f ' value of the primai subproblem with c = c1, z = zl for an achieved

feasible solution
— d ƒ " possible improvement of the value of the primai subproblem with

c = cl
9 z = zl by achieving the optimal instead of the current

feasible solution
— éf" optimal value of the primai subproblem with c = cl, z = z\ thus

(14) — d ƒ ' — d ƒ * - — d ƒ *

or from (5) and (11)

(15) — d/w = — d / ° + Ucl+(C — $kl)zl — wk

àh optimal value of the dual subproblem

dh° optimal value of the dual common subproblem

dh' value of the dual subproblem with s = sk, p = pk for an achieved
feasible solution

dh" possible improvement of the value of the dual subproblem with
s = sk, p = pk by achieving the optimal instead of the current
feasible solution

dH" optimal value of the dual subproblem with s = sk, p = pk, thus

(16) dh' + dh" - dti"

or from (9) and (12)

(17) éhm - dh° + s\P — Lzl) —pkx — m1

Asteriks may replace apostrophes to indicate an estimate absolutely greater
than or equal to the value concerned. This estimate may, whenever necessary,
be successively improved until it equals the value being estimated.

The algorithm may then be described as follows.
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O. Initiation

The solution process is initiated by reading the data including s ^ 0, for-
mulating the initial parts of the common subproblem, the primai and the
dual masters, setting ƒ — w = oo, h = m — — oo, assigning some suitable
(arbitrary) values to s = sk (0 ^ sk < s), z — zl (0 < zl < z), and p = pk =
max (— A + skH, 0), c = cl = max (i? — JVz', 0).

GC. General control of the process

If/— h > z then step 1, 2, 3 are solved in parallel or in some séquence else
step 4. To ensure convergence the results of the following theorem should be
taken into account.

1. Common subproblem and information transfer décision

On the basis of the latest received information concerning sk,pk, cl
9z

l the
modified objective fonction and the modified constants of the common sub-
problem (11) are obtained.

The common subproblem is then solved for i) a primai, or ii) a dual, or
iii) a primai and a dual feasible solution. The décision as to which type of
solution (i, ii, iii) that is desired may be made in the course of the solution
process in order to minimize the computational work necessary to produce a
primai or a dual solution or both which may improve the primai or the dual
master or both. The optimization of the primai or the dual or both solution(s)
of the common subproblem must at least be continued until i) —à f ' < 0,
or ii) âiï > 0, or iii) — àf ' ^ 0 and àh' > 0.

During the solution process the estimâtes —d/** and àh** may be
obtained and used together with — éf ', dh' for determining which type of
solution should be aimed at in solving the common subproblem (cf. section 4).

If — àf' < 0 information concerning the vector of tt coefficients corres-
ponding to the achieved feasible solution b\ y1 of the primai common subpro-
blem is sent to the primai master (3).

If dh' > 0 information concerning the vector of tj coefficients correspon-
ding to the achieved feasible solution uj, qJ of the dual common subproblem
is sent to the dual master (7).

2. Primai master problem

An improved primai feasible solution is obtained to the primai master (3),
such that none of the a, x and the slack variables is a possible candidate for
introduction into the basis, The value of the objective function fk provides
an upper bound upon the optimal solution. The information s = sk, p — pk,
w = w&, ƒ = ƒk is sent to the dual master and to the common subproblem.
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3. Dual master problem

An improved primai feasible solution is obtained to the dual master (7),
such that none of the v, r and slack variables is a possible candidate for intro-
duction in the basis. The value of the objective function h1 provides a lower
bound upon the optimal solution. The information c = c\ z = zl, m = m1,
h = h1 is sent to the primai master and to the common subproblem.

4. Final solution

Establishing as may be required

i) the achieved primai feasible (s-optimal) solution

a = a\ 6 = 2 bH^ c =

i i

and/or
ii) the achieved dual feasible (e-optimal) solution

s = V sjtp u — V ujtp v =v\

r=rl

Theorem. The process above will converge to an optimal primai and dual
solution provided that
either

i) a primally feasible solution to the common subproblem is only obtained when

— (ƒ — *) + d*' + âh" + df" < 0
and this solution is improved until at least

— d / ' < 0 i.e. — df ° < — de1 — {C — skL)zl + wk

before the primai master is entered;

ii) a dually feasible solution to the common subproblem is only obtained when

ƒ — h — df — df" — dh" > 0

and this solution is improved until at least

dh' > 0 i.e. dh° > — sk(P — Lzl) + pkx + m1

before the dual master is entered;

iii) transfer is compulsory

a) if f — h > 0 and dlf = 0 then go to step 1 (i) and then to 2,
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b) if f — h > 0 and — àf" = 0 then go to step 1 (ii) and then to 3,
c) if f—h — 0 then go to step 4;
iv) the terms àf' and àhn above represent an envisaged inoptimality of the

corresponding subproblem solution which successively must be decreased to zero ;
or
a scheme of itérations is used which will cause transfer from primai to dual

itérations if —- d ƒ '" ^ 0, and from dual to primai itérations if àhw < 0, and
finish if f = h.

Proof

THE INITIATION OF ITÉRATIONS.

The initial primai subproblem solution must always enter the primai master
to fulnl the constraint V î, = î ; similarly, the initial duaî subproblem solution

must always enter the dual master to fulfil the constraint "V tj = 1, hence the

process may always be started.

The optimal solution of the primai and dual common subproblem must lead
to an improvement of either the primai or the dual master or both.

The value of the primai subproblem is — d ƒ '" and that of the dual subpro-
blem àtt". If — àf" < 0 (or àf" > 0) then the primai subproblem solution
must improve the primai master (degeneracy being handled by the lexicogra-
phie method). Similarly, if àlf > 0 then the dual subproblem solution must
improve the dual master (degeneracy being handled by the lexicographie
method). A positive value of d/" + àhm means that either d/" or dh'" or
both are positive and hence that the corresponding primai and dual subpro-
blem solutions may improve either the primai or the dual or both masters.

Thus it is of importance to consider the value of

(18)

d ƒm + dhm =

= — (— d ƒ ° + vcl + {C — skL)zl — wk) -f = d r from (15)

+ (dh° + s\P — Lzl) —pKx — m1 =\ = dhm from (17)

>— pkx + wk— - ƒ from (6)

= — h from (10)

= 0 from (13)

- f-h
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According to the Duality Theorem (!) the primai objective fünction will always
be greater than or equal to the dual objective function, hence ƒ — h > 0.
Unless an optimal primai and an optimal dual solution have been found the
strict inequality will apply, thus

(19) d/w + d/r = ƒ — h > 0

Therefore, the optimal primai and dual solution of the common subpro-
blem may be used to improve either the primai master or the dual master or
both until an optimal primai and an optimal dual solution have been obtained
to the entire problem, in which case ƒ— h = 0.

The cases in which the optima! primai and the optimal dual common subpro-
blem solution may not improve one of the masters.

It follows from (19) that

(20) if df" ^ ƒ— h > 0 then dhf/' < 0

in which case it would be of no avail to obtain an improved feasible or optimal
dual common subproblem solution as neither would be able to improve the
dual master.

Similarly, it follows from (19) that

(21) if dhm ^ ƒ — h > 0 then d/'" < 0

in which case it would be of no avail to obtain an improved feasible or optimal
primai common subproblem solution as neither would be able to improve the
primai master.

The corresponding conditions for the case of a certain inoptimality of the
primai and dual common subproblem solutions.

If instead of considering a completely optimal common subproblem solu-
tion, a certain amount of inoptimality is envisaged formula (19) may be expres-
sed using (14) and (16) as

(22) àf' + df " + Ah' + dh" = ƒ — h

The primai common subproblem solution may only improve the primai
master if

(23) — d / ' < 0

which condition using (22) may be expressed as

(24) — d ƒ ' = — (ƒ — h) + dh' + dh" + df" < 0

from which condition i) of the theorem is obtained.

0) Cf. G. B. DANTZIG, op. cit., section 6-3-(6).
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Similarly, the dual common subproblem solution may only improve the
dual master if

(25) dh' > 0

which condition using (22) may be expressed as

(26) d*' - ƒ — h — d ƒ ' — d ƒ * — dh" > 0

from which condition ii) of the theorem is obtained.
The possibility ofreducing dh\ dh", df" to zero in afinite number of itéra-

tions will always enable further improvement of the primai master unless an
optimal solution has already been attained.

By iterating between the dual master and dual subproblem (s, p unchanged)
we may reduce in a finite number of itérations

dh' + dh" = dhm = 0

Similarly, by finding a completely optimal primai common subproblem
solution we may reduce in a finite number of pivots

df" = 0

Therefore we may always make the expression (24) less than zero and thus
enable an improvement of the primai master unless

ƒ— h=0

in which case both an optimal primai and an optimal dual solution have been
found.

Similarly, the possibility of reducing d/ ' , d/", dh" to zero in afinite number
of itérations will always enable further improvement of the dual master unless
an optimal dual solution has already been attained.

As df ', d/", d/z" may always be reduced to zero in a finite number of
opérations, the expression (26) may always be fulfilled, and hence an improved
dual solution always be possible unless both an optimal primai and an optimal
dual solution have been reached.

THE CONDITIONS FOR TRANSFER NOT FULFILLED AT EVERY STAGE.

That the conditions (24) and (26) are not redundant may be seen by consi-
dering the case of the primai master having reached the optimal primai solu-
tion and simplex multipliers, though the dual master has one or more subpro-
blem solutions to complete before the optimal dual solution may be reached.
As then ƒ = f°, h + dh" > h° = f° it follows that — df' ^ 0 and expres-
sion (24) will therefore correctly prevent transfer to the primai master. Concur-
rently expression (26) would permit transfer from the primai master as df" = 0.

The conditions (24) and (26) explain the interesting expérience of D. Pigot (*)

Cp. D. PIGOT, op. cit., end of section 2.3.
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of the impossibility of afTecting an improvement of one of the master problems
(the primai) after only one itération had been made between the other master
(the dual) and its subproblem, and that on the average three (dual) itérations
proved necessary before a successful transfer to the other (primai) itération
direction was possible.

CONVERGING TOWARDS THE OPTIMUM.

If alternating transfers are made from primai to dual itérations and from
dual to primai itérations fulfilling conditions i-iv, this will lead to strictly
monotonically improved primai and dual master solutions with their final
value equal to the optimal solution of the problem.

As no non-improving subproblem solution may ever enter a master, any
alternating transfer between the various problems making some itérations at
each stage, will lead to monotonically improved primai and dual masters
solutions with their final value equal to the optimal solution of the problem.

4. AN UPPER BOUND — d/** OR d/*** UPON
THE POSSIBLE FURTHER IMPROVEMENT — d/ " OR dh"

A feasible solution is assumed to be available to the primai subproblem
with inserted cl,zl solution, thus to the problem 3-(ll) such that no slack
variable is a candidate for introduction into the basis.

As longs as the ü coefficients have been chosen large enough, no h variable
will ever become a candidate for introduction. Therefore, only y variables
with négative reduced cost coefficients

(1) 5 = (B — skK) — ulD — q\— I)

where u\ ql represent the simplex multipliers corresponding to the b\ y1 solu-
tion, may be candidates for introduction into the basis. The y variables are,
however, subject to the upper bound y.

A lower bound upon the possible improvement of the primai subproblem
with unchanged c, z, is therefore given by

(2) — d/** = X (ifBj < 0 then Bjyj else 0)

assuming that no b and no slack variable is a candidate for introduction into
the basis

An upper bound upon the possible improvement of the dual subproblem
with unchanged s, p, is similarly derived by defining the reduced revenue
coefficients

(3) g - (Q — Mzl) — Ibj — Df
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where bJ\ yj represent the simplex multipliers correspondit^ to the uJ\ qj solu-
tion, and obtaining

(4) dh** = V (if Qj > 0 then üjQj else 0)

j

^ dh"

assuming that no q and no slack variable is a candidate for introduction into
the basis.

If an optimal solution is obtained to the corresponding subproblem, the
estimâtes become

_ d / * * = — d / " = 0
and

d/z** = dh" = 0

as no variable is a candidate for introduction.
The above lower and upper bounds may be used to avoid unnecessary

improvement of a primai or dual feasible solution of the common subpro-
blem if — d ƒ ' — dƒ ** > 0 or dh' + dh** < 0, respectively.

If — d / ' — d/** > 0 then it foïlows from (2) and 3-(14) that even an
optimal primai common subproblem solution will not be able to improve
the primai master as

_ d / / f f - — d / ' — d/" ^ — d / ' —d/** > 0

in which case further computations aiming at improving the primai common
subproblem are of no use.

Similarly, if âh' + dh** < 0 then it follows from (4) and 3-(16) that even
an optimal dual common subproblem solution will not be able to improve the
dual master as

dhm = ûh' + dti' < dh' + dh** < 0

in which case further computations aiming at improving the dual common
subproblem solution are of no use.

5. SWTABLE MODIFICATION
IN THE CASE OF BLOCK-DIAGONAL

STRUCTURE OF THE COMMON SUBPROBLEM

If the common subproblem D in section 3-(ll)-(12) has a block-diagonal
structure (as in the introductory illustration), then it may be considered to
consist of as many independent part problems as there are blocks and the
solution of each of these may take place in parallel.

In the primai phase, different solutions n €Jf(g, l) of the part problems g € S
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corresponding to the same quantity solution / € £ of the joining activities may
be combinée to form a solution of the entire primai subproblem or some
fraction thereof.

It may therefore be useful to reformulate the constraints of the primai
master

h > 0 (i € 3)

by defining nonnegative fractions tt denoting by which amount the quantity
solutions / € £ of the joining activities are combined together with the quantity
solutions ï of the complete primai subproblem

ti ^ 0 (i € 3)

U>o (let)

and other nonnegative fractions tlgn denoting by which amount the nth solu-
tion of the gth part problem corresponding to the Zth quantity solution of the
joining activities are taken.

The combinations of fractions of part problem solutions corresponding to
a particular fraction of a solution of joining activities must fulfil the folïowing
conditions, if the overall combination should give a feasible solution of the
whole primai subproblem.

(3)

The number of équations in (3) would be equal to the number of solutions
for the joining activities times the number of part problems. As the number of
solutions £ for the joining activities would increase with every dual itération,
the number of such solutions separately considered by using the constraints (3)
may have to be kept limited.

This may be achieved by exchanging some apparently less important sub-
problem solution based upon tv and corresponding tVgn variables into a com-
plete subproblem solution *' based upon a fixed combination of the different
solutions n € JV\/'S g) of the part problems g e S. The corresponding fixed
solution of each part problem g could then be selected on the basis of the
current values of the fractions

(4) _ £
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where Vgn dénotes the nth solution of the gih part problem corresponding to
the /'th quantity solution of the joining activities.

In exchanging a tv variable for an additional /t, variable, we shall always
abolish |S | (*) of the constraints (3) and [S| or more variables tVgw and still
obtain the same solution to the master problem with the previous values of
other variables and tt. = tr. In the case that tv is basic and more than |8 |
basic variables tVgn are abolished the corresponding solution of the master
problem will become degenerate.

In the dual phase, different solutions m € JL(k, g) of the part problems g € S
corresponding to the same price solution k € X for the joining resource balances
may be combined in the same Way to form a solution of the entire dual sub-
problem.

If the above approach of combining different solutions of part problems is
adopted the linear programme procedure used must be able to deal with
degenerate solutions arising from

i) the replacement of several variables
hgr» h (tkgm, tk) by one variable tt (t3) ;

ii) all the constraints (3) have constant terms equal to zero (2).

6. REQUIREMENTS ON THE LP ALGORTTHMS
FOR THE SOLUTION OF THE MASTER PROBLEMS

AND THE COMMON SUBPROBLEM

The linear programme procedure(s) used to solve the master problems and
the subproblem should deal in a special way with the added variables and the
upper bounds, and bef ore information is transferred from one master problem
to the other and to the common subproblem(s) ensure that no variable from
certain groups of variables may be a candidate for introduction into the basis.

The method used for solving the common subproblem should give a
feàsible primai and/or a feaâible dual solution. This may be obtained by using

1) any linear programming procedure to détermine both an ûnjproved
primai feàsible and an improved dual feàsible solution, or to détermine an
optimal solution, thereby obtaining both an optimal primai feàsible and an
optimal dual feàsible solution; or

0} The number of éléments of t(ie set S, i.e. the number of part problems is hère
denoted by [ S |.

(2) It seems hkely that a useful Way of handhng the latter degeneracy is : to calculâte
a joint reduced cost coefficient based upon any particular quantity solution for the joining
activities and the most favourable of the corresponding quantity solutions of each of the

Eart problems; after having found the most favourable of these joint reduced cost coef-
cients to introducé the corresponding group of variables m séquence, the improvement

in the objective function only oçcurring when the last of these variables has entered the
basis.
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2) some linear programming procedure which provides at each itération
both a feasible primai and a dual feasible solution (*), like the logarithmic
potential method by R. Frisch (2) possibly modified as proposed by
G. R. Parisot (3).

The method used should probably make use of the previous common sub-
problem solution in obtaining a new solution to this problem after the objective
function and constants have been modified. Possibly this may best be achieved
by using a parametric programming approach (4) in conjunction with one of
the above mentioned methods.

If as a rule only improved feasible primai or dual solutions of the common
subproblem are sought in the itération process, then it may be required that
the algorithm used should give a bound upon the possible improvement of the
corresponding primai or dual objective function.

7. INFINITE SOLUTIONS OF THE PRIMAL
AND DUAL SUBPROBLEMS

Even though the overall problem may be assumed to have a finite optimal
solution, the conséquences of permitting the primai and dual subproblems to
have infinité solutions (dropping the extended formulation of section 2) may be
investigated with respect to the three possibilities that only y(u), both y and
z(u and s), only z(s) variables may give rise to infinité solutions of the primai
(dual) subproblem.

The gênerai conséquences would be the following.

i) The primai and dual masters would have to have columns corresponding
to the infinité directions, which would not be constrained by the requirements

i J

The above constraints would then have to be formulated as

Sy£ = 1 and V Sjtj = 1

i j

where 8£ = 0 or 1 and 8,- = 0 or 1 depending upon whether the ith and the
jth column correspond to a finite solution or an infinité direction, respectively.

C1) Cf. P. WOLFE, Methods of Nonlinear Programming, in J. Abadie (Editor), Non-
linear Programming, North-Holland Publishing Company, Amsterdam, 1967, pp. 117-119.

(2) R. FRISCH, The logarithmic potential method for solving linear programming pro-
blems, Memorandum from the University Institute of Economies, Oslo, 1955.

(8) G. R. PARISOT, Résolution numérique approchée du problème de programmation
linéaire par application de la programmation logarithmique, Thesis, Université de Lille, 1961.

(4) Cf. G. B. DANTZIG, Linear Programming and Extensions, op. cit., section 11-3; and
Sverre SPURKLAND, The Parametric Descent Method of Linear Programming, Norwegian
Computing Center, Oslo.
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ii) The primai and dual subproblems would have to be solved for these
infinité directions.

iii) As long as there remains an infinité direction to the primai (dual) of a
subproblem there exists no dual (primai) solution to it. Therefore itérations
must be continued between the primai (dual) master and the primai (dual)
subproblems until no further infinité direction may improve the primai (dual)
master.

Only infinité y{u) solutions possible

The finding of infinité primai (dual) subproblem solutions may in this case
easily be achieved in the course of solving the primai phase II problem. If the
subproblem is not optimally solved before a switch is made to dual itérations,
some yet undiscovered infinité directions may make a feasible dual solution
impossible.

Both infinité y and z (w and s) solutions possible

The finding of infinité primai (dual) subproblem solutions becomes then
fairly complicated because of difficulty of finding improved z(s) solutions due
to the size and structure of the problem. In the case of the primai subproblem
the corresponding bounded homogeneous primai subproblem (*) would be

(1) Min { (B — skK)y + (C — skL)z \

Dy + Mz^ 0

Nz^O

- y >-l

— z> — 1

y>0 z>0 } =

(2) =Max{«0 +v0 — q\ — r\ \
u,v,q,r

uM+vN —r ^C — skL

uD — q < B — skK

M^OoO^Or >0 } < 0
0) The structure of this problem seemingly suggests solution by dual décomposition.

As the coefficients B — skK, C — skL of the modified objective function have changed
every time when a new solution y, z is required, the previous dual solutions «, q of the
corresponding subproblem(s) are no longer true solutions of them, and therefore it is
impermissible to use the previous vectors of the dual master problem. The previous dual
subproblem solutions may possibly be brought up to date by on]y making a change in the
q vector, which will only affect the q\ terms of the dual master problem. The vectors of
the previous master problem may then so modified be used in finding an improved solu-
tion to the present master problem.
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Only infinité z(s) solutions possible

As it is the finding of infinité z(s) solutions, which seems to lead to increased
computational difficulties, no greater relief occurs apparently from restricting
the possibility of infinité solutions only to the z(s) variables.

8. SUMMARY OF THE GENERALIZED METHOD

Fig. 4, 5 and 6 summarize the main features of the generalized method.

Spécification of data
and structure .of the

Original Problem
Mia { CA:

* Ax > b
x> 0}

Primai Phase I Problem call of the
procedure

FÏNITE VALUED LINEAR
PROGRAMME to solve

Min { Ox + I y \
*>v Ax + I y> b

x> 0 y > 0 } = W
Primai solution x = x'
and dual solution u = n"

' > 0

Dual Phase I Problem calt of the
procedure

FINTTE VALUED LINEAR
PROGRAMME to solve

Max { «0 — vl (•
v,v UA v/< C

Primai solution u — u'
and dual solution x = x*

no primai and no
dual solution

infinité primai
solution

x = x' -f x"0
0 -> co and
no dual solution

no primai solution
and infinité dual
solution
u = «' -f- U*Q
0 -+ oo

finite primai and
fînite dual solution

Primai and Dual Phase H
Problem

call of the procedure

FINITE VALUED LÏNEAR
PROGRAMME to solve

Min { ex
* Ax > b

A' > 0 } = Z°
Primai solution x = x9

and dual solution ;/ = u0

Figure 4
The method of establishing the solution of any linear programme by considering three

related finite valued linear programmes.
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NOTE : An advantage from a computational point of view may be to replace
the upper bounds upon the original primai (dual) variables by a few cons-
traints.

A formaliy superflous identity matrix I has therefore been inserted into all
the tables of the following summary. By changing the définition of the vector s j ,
v, 1 of figure 4 and a, b, c, s, û, v, p, q, r, — x, — j , — z of figures 5 and 6 to

B >Min

s
u
V

p

q

r

1
1

1

H

- i

K
D

-1

L
M
N

-1

>
>
>

>

P
Q
R

- X

-y

-z

|oTb|c I
Figure 5

Extension of the finite valued primai phase I or dual phase I or primal-or-dual phase II
linear programme (in bold frames) with upper bounds upon the original primai and dual
variables.

become scalars — I to mean a row vector (— 1, — 1, ..., — 1) and I the corres-
ponding column vector (1, 1, ..., 1) then all the artificial variables y(v) will be
replaced by one artificial variable, and the upper bounds upon the original
primai (dual) variables x(s) by a single constraint of the type

— N x-^ » etc.

As a necessary préparation in developing a computer programme based
upon the above décomposition mathod, A. C. McKay of the Faculty of
Commerce and Social Science, University of Birmingham, has constructed
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DUAL MAS7ÇA

s}L+ u'M+pJ0-H)JO

Î

Af

ƒ

- /

«4
+•

H

4-

O
+

JO

o

<ö

i a

L

f
-Q

—>

Figure 6

Décomposition of a finite vaiued linear programme m primai and dual directions^to
obtain a primai and a dual master solved in parallel and onè or more common subproblems
(information flow).

It is of importance to observe that neither master problems nor subproblems make
detailed use of the transmitted values variables but only use them in formulating new
columns or rows of net effects. Therefore the information flow may be reduced by transmit-
ting corresponding net effects instead of values of variables wherever this woulo lead to a
lesser amount of information.
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numerical test examples (l)> one of which complètes this paper by illustrating
in full detail the functioning of the method. This numerical study was
undertaken in order to provide a test example for a computer programme.

An extremely simplified computer programme to illustrate the main com-
putational aspects of the method has been elaborated (2). An advanced compu-
ter programme by A. C. McKay has recently been successfully tested by him
upon a numerical problem involving formai considération of two common
subproblems (*). A systematic study of factors influencing the practical speed
of convergence of the method is currently being undertaken.

9. CONCLUSIONS

The favourable computational expériences of Beale, Small and Hughes (3)
with their large primai décomposition programme may probably be taken as an
indication that the above generalization of the double décomposition method
by D. Pigot may offer not only an important theoretical but also a forceful
practical tooi for achieving a near optimal solution of very large economie
planning Systems, especially for optimal international/interrégional interunit
economie planning (4).

A great advantage of the method is that the solution of a common subpro-
blem of block diagonal structure may take place in parallel, each block inde-
pendently of the other. A very large economie planning problem containing
reasonable number of joining resource balances and joining activities and a
great number N of diagonal blocks each of reasonable size, may therefore, in
principle, be solved on N computers each solving one block of the common
subproblem plus 2 computers solving the primai and dual master problems.

This should make the practical formulation and solution of very large
economie planning Systems possible by only relying upon available Computing
resources from high speed computers to pencil and paper.

0) Cf. A. C. McKay, Centralization and Decentralization of Décision Making» The
Double Décomposition Method, A Numerical Example with One Common Subproblem
and Finite Optimal Solution ; A Numerical Example with Two Common Subproblems
and Finite Optimal Solution ; University of Birmingham, CREES, Discussion Papers,
Series RC/A, Nos. 14 and 17, Birmingham, Great Britain, lOth August, 1967 and Ist
April, 1968.

(a) T. O. M. KRONSJÖ, Computer Problems in Mathematica! Programming (1-9) Univer-
sity of Birmingham, CREES, Discussion Paper, Series RC/A No. 21, Birmingham, Great
Britain, fortheoming.

(3) E. M. L. BEALE, P. A. B. HUGHES, and R. E. SMALL, Expériences in using a Décom-
position Program, The Computer Journal, Vol. 8, No. 1, April, 1965, pp. 13-18. Recently
this report has been followed by an investigation by P. Broise, P. Huard and J. Sentenac,
Décomposition des programmes mathématiques, Dunod, Paris, 1968.

(*) Cf. T. O. M. KRONSJÖ, InternationnallInterrégional! Interunit Economie Coopération
by Linked Computers, University of Birminghan, CREES, Discussion Papers, Series RC/A,
No. 20, Birmingham, Great Britain, fortheoming.
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A NUMERICAL EXAMPLE VITH ONE COMKW SUBPROBLD* AHD FIHITE OPTIMAL SOLUTION

by A C McKay»

1 Général Remarks Concemina the HumericaJ Calculâtions

To achieve greater c l a r i t y o f exposi t ion a i l th^ sunplex tableaux are given m th# standard canonical form vxth wmpt:

spaces for those éléments vhich the Simplex Method Using Mult ipl iers makes i t unnecevtary t o c a l c u l a t e As t h e i n i t i a l

so lut ion at one stage or another i s both pnmal lv and dually m f e a s i b l e the Self-Dual Paraoetric S i a p l e s Algor i th» 3 »•

irrpl ic i t ly used The Upper Bound ing Technique i* u«ed t o deal wit h upper bounda • bar denoting • non-bas î c var iabl» at

i t a upper bound

I t v i 1J often be necessary t o so lve s cotnnon eubproblef» for vhich one or both of the o b j e c t i v e function and the n g h t

hand s i de have changea but for vhich thp inverse of 8 previoup bas is i s Icnovn Suppose the previous problen va»

Ax • By * b

and that x i s the vector of variables that vere in the basis The problee» vould be set out a»

basic variable

*o
e

\
X

x y e * o

-e -d 0 1

-A -B 1 0

0 -d+cA~1B -cA~J 1

1 A -1B -A"1 0

constant

0
-b

Tf thf prohlem is changea to
)c x * 4 y I

Ajr • B!y > b

it i s clesr thnt th« tableau vitb the vector x be3ic v i l ! b«

basic variable

x

y

0 -d *c A"1B -C A"1 \

1 A-1B -A"1 0

constant

A-V

Thu3 the tableau can be constructed fron s knovlsdge of > - 1 The r^sult v i l l be ex tene i fv ly uied t o avoz4 unnaeestary

opérations v

The po^s ib i l i ty ar i ses that m U3ing an e a r l i e r inverse v i t h a nev object ive functioo or n g h t hand a i d e , aa \mper bound

may be exceeded As a f i r s t s tage of the simplex irethod i t vould then be necessary t o remove t h i s var iab le from the b a s i s

find include i t as e non-bas ie var iable at jf* upper bound

The dusl of the consen «îubprobleir» i« not 3olved beesuse the so lut ion m avai lable in the t a b l e a i o f the primai probien

The simplex mult ip l iers give the so lut ion for th.e dual variables c o r r e s p o n d i s to the conatrainta of the o r i g i n a l problem

The value3 of the daal variables correspond ing t o upper bound s on eny primai variable are given by the r e l a t i v e coat factor

of a variable vhich i s at î t s upper bounrt otherviae they are zero

In a problem of the s i z e u eâ hère an optimal solut ion t o the comraon sibprnMrm i s e a s i l y foufld In larcer probiens ï t

vould be necessary onlv to firnï a primally feasibl<* solut ion and a duallv f eas ib le so lut ion tr. the conmon subproble» I t i s

then poss ib le t o cale î late uçper bounds upon the poss ib le further inprovement of the aubproblen s o l u t i o n s the te upper

being used in the décis ion of vhich naster problem to enter

• The Svedi-h Coimc ) for Social Pc CBreh I
tmvprsit/ of Birmingham under vho-̂ e uj

1 1 Cf C 8 nnnt îgj ir"ar Proftrarjiinfli on

3)

. -, non or̂ rt thi" research bv a prant avarded to T 0 M Kronsjö
•vijion it has bcen undertaken

> Jersey 19Ô3 ••etion 5-ï
Cf opus c i t sect ion 3~1

Cf opts c U sect ion 11 j

CT opus c i t sect ion Î&-1
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g. The Problem Conatructed for Test Calculation»

To investigate tbe behaviour of the généralisation of the double décomposition aetbod élaborâted by T.O.M. Kroosjö
in the preceding paper the folloving nuaerical exasple vas constructéd.

y, - y2 • i , - 2*2 > 2

^ i • * * - y , - «, - =3 M
*, - z%7 * o

vhich ha» the optimal solution: x-fx^M y-fyi.h] s.f, }«[5]

KI l°l M M

An extended formulation i s used, where bar» dénote upper fcoiatds «pon variaties . The notatioa follows that of
T.O.H. KronejB as given in the preceding paper 3 - ( l ) , and thus

«•(10 10) Û«(1O 10) ^«(10) A-(l l ) B-( 1 1 - l ) O ( 1 - l )

R-fl l ] K-[ 1 1 l ] L - f 1 i l P.f3l
U -lj l 2 -1 lj [-2 - l ] \u\

D-[-l -1 0] M-( 1 -2} Q-fs]
U I -l] l-l -lj UJ

H-( 1 -2) R-(0)

y-f20)
20

[20J

Figure 1: Die solution prcceea [eee facing

Although the cal dilations are hère set out in séquence, they can actually fce earried out in parallel as shovn in
Figuw.l . The transfer décision in Step l i» nade on the b u i s of pri*Mly and dually feasible solutions to the Comon
Subproblem.

Step 0 Init ial Values

f - w - 100 sk • (i l) pk • *ax (-A • s'V,OÏ « (2 o) h • » • -100 z12} - J2] c1 - MX (B - Ht^O) •

Subprctelew as in 3 - ( l l ï - (12 ) , thuo
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STEP O
INITIAL

SOLUTION

PRIMAL MASTER TRANSFER DECISION DUAL MASTER
PROBLEM COMMON SUBPROBLEM PROBLEM

Figure 1
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» 0 y i 0

% 2 • 2

- y, * 1 • k

» -20

» -2C

- y, $ -20

bosic variable

upper bounds

-df°

e
I

«2

-df°

yi

-df°(«dh°)

yi

b|

-10

-1

0

-10

-1»

0

0

-10

0

-1

-13

-1

-6

y»

20

2

1

-2»

0

0

0

y2

20

-1

1

-1

-2

J

-7

yi

20

3

0

1

U

1

-1

«1

0

1

0

0

1

0

-10

-1

0

e2

0

0

1

1

-4

-J

constant

0

-h

-5

-5

'H
f€0
4

(b) Priaal

•n»e objectiTe ^JnctlOo IB giren by 3-<15), thua

-df"* • 6 0 + 2 0 * 2 - 100 • -16 < 0

TRANSFER IBF0RHATI05 TO THF PRIHM, HASTEB

consisting of bl • fbj] • [L| yx

( c ) Du&l S\

henee tho décision ia taken to

in the font of the more
compact information

§5.1.1
i
5

-[67i

h
5

The o b j e c t i v e funct ion IB n v e n by 3~(17) , thua

- d h ' - - 60 • 9 - *iO * 100 « 129 > 0 , henee the d e c i w o n 10 taken t o

TRAJJSFKR IN FORMAT IOH TO Tiff DUAL MASTgR

c o n s i a t m c of u1 - (u^ uj ) • (iO U) qJ - (q^ ^ q J ) - (O O 0)

in the forn of th^ more conpact information

(u H uJC - qJÇ) - (6 -2U 2k - O) - (6 -21» 24]

S t e p 2_1_ Prxnal Mwater^Problei *3 in 3 ~ ( 3 ) , thus
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baste variable

upper bounde

t

e)

•a
e3

f

e)

•s

f

*)

-10

-1

0

0

-10

0

-10

-10

0

-1

0

-10

-1

-15
2

20

-1

-1

-2

C

-1

-1

-2»

0

0

20

-1

-1

1

0

-1

)

-3

2

-873

-ij

1

-!•

0

0

0

0

1

0

0

0

1

0

0

0

)

0

0

0

0

1

0

0

0

}

0

-i

-i
-i
0

0

0

0

1

-8TJ

-H
1

-1

-86

-7

-i
-1

coûtant

0

-3
-*

-1

87*

i
-5

1

90

6
s
2
1

• • (0 ))
p - (0 0l
» - (88)
f - 90

Sten 3.1 Dual Maater Problea as » 3"(7), thue

t -1 ^ 6 ) ^

t 0 -211)1,

I

t 10

upper bound»

h

•l

*3

b

t,

b

S

10

5 0 20 20 0 0 0

5 1 - 1 0 1 0 0

-2i ' 2 0 - 1 0 1 0

1* 0 0 0 0 0 1

0 0 20 20 0 0 - 9

0 1 -1» 0 1 0 - 5

0 0 l 2li

0 0 0 1

0 20 0 20 20 0 -109

- 1 0 5

0 1 2U

0 0 1

constant

0

1

-1

ï

-9

-l

23

1

-89

h

23

1

c - (0)
z - (*> O)
» - (109)
b . -89

) 1.1 Tr»nefer Décision

ta) Comon Subrroblen {The inverses of previous probleos ere used to update the modifieû objective functton and
constants in connon subprobleiu, and

Kodified objective function 10b2 + 10b2 • (1 - l)y, • (1 • J)y3 • (-1 - i)y3 t h e e n « r i r g column in naater
croblens)

»«« -riable

upper fcounds

-df°

bi

-dl?t-dh°j

0

1

-7

-5

7

20

0

0

0

?O

"J

y,

?o

-?
-Î-

-i
0

-,

-10

-1

0

-3

z

•a

-5

*i

~ï

3

0

constant

'75

H

ia

fied constants
12 - ?0)
(1 • ?0)
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- d f " - - ^ • O • ttO - 83 - - ? 0 l <

TOAHSFER OTORmTIO» TO THE FRIMAL HASTE3

c o n a i s t i n g of

( c ) Dual Subprobiem

dh» ( - - ^ | • 22 - O • 109 - XOa

TRAHSFEB 1SFORMAT1OB TO THE DUAL HASTSR

C O U i l t i o g Of (uJH i UjQ - fy m ( | -

Step 2 . g Pr i—1 ttoater Problea

Step 3.g Dual Maater Problem

l .g Trnmafer

Connon Subçrnblwi

fied objcctiv» function

: 4 - 0) - 4)

b**ie w U b l e

upper bouod»

f

e l

*l
f

f

20 20

-10 - l | 0 - | 0 70j

6«
1

-10 - 1 5 | - l l f l | 0 0

-10 -10 -] -1 -6UJ 0

0

1
0
0

0

O
 

O
 

1-

0

1
0
0

-è
-1
-1
0

-A
Am

0

0
0
1

-88

-7
-1
-1

-H

-rl

-23

-53
-1

-U

90

6

i
i

cl
23

50
1
7

op«per bounds

h

r l

h

ï
h

C 2

10

0 -1081 20 0 20 20 0 -109

} * - 1 0 5
16 0 1 21*
1 0 0 1

0 0 -3J 2U\ 20 - 5 | 0 l l |

;! ° 4

¥ o -k
181 0 0 20 20 0 0 *-£

o o i

o i 8

1 0 -l

comtant

-89

k

23
1

81

4
i
T
i

Addational coiunn
(origin»! forr'5

<3 • 0 • 20)t2

(33 • 20)t2

(51 - itOH,

- (0 0)
- (0 0)

- (23)
• 23

Addition*! colian
{original foi»)

(2 - O 1

(-1
(-1

C - (0)
z - (0 0Î

« • (4)
» • 4

C l -



CENTRALIZATION AND DECENTRALIZATION 111

upp • bounda

-df°

y

-df°(W>

- 9

~2*
-J

0

- 9

- 1

0

0

0

-1

1

-4

0

1

-1

- 1

2
1

-10

-1
0

- 1

1
0

-4
- J
- ï

- 3

-5
- 2

25J

ï

KE0CS7OS-6-R1

Modified constants

2 - 0

1 - O

tb) Frioal Subnroblan

-df'" » 25? + 0 • 0 - ?3 » | > 0 henre

TRANSFER KO INFORMATION TO THE PRIMAL MAPTFft

( e ) Dual Subproblen

dh1" * 2 5 Ï + 0 - 0 - ^ 1 * 1 6 > O hence

TRABSFLR INFORMATION TO THE PUAL !fASTEH

c o n a i B t i n g o f [Jii ; u^Q - q jy) - ff - 8 5 : ; ?5j - O)

Step 3 .3 Dusl Kaster Problen

25Ï)

basic variable

upper bounds

h

*2

h

r 3

10

18J 0 - lê 0 ?0 20 0 0 4

1 0 0 1
-ITï 0 1 8

*• 1 0 -J

36J 0 0 h 16 20 lt 0 4

-i 0 |

5 0 -i

1
T

Step 1 .3 Transfer OecisioTi

(tt) Coïïnnon Subproblem

Hodified objec t ive functiûn + 11 - Ö)yl • t l • 0 ) y 2 + (-1 - 0 ) y 3

basic variable

upper bound»

-df°(«dh°)

*>» Ï>2 y,

20

o -l o

y 2

20

-4

y 3

20

~2

«1

-10

-1

0

e2

-4
- 3
- 3

constant

4
3

i
(b) Primai Subproblem

» - a r - - ± | * o • u - i

TRANSFER INFORMATION TO THE

cossistinc of [ïèl_ï»§ïl]

>3 - - Ö . O

PBIHAL MASTER

m

5

f1»

( c ) Dual Subproblca

,M -dh"' » ^ | • O • O - i | > O

TRAKSFIR KO INFORMATION TO THF DUAL HA5TER

Addit iooal c o l mm
(original f om)

(0

(0

(0

e

z

- 0 +

•

- (o)

. ft

?5l)t3

IH3
25i)t3

1 * 3

o)

Modifie* constants
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Step g.3 Primai Kaater Froblen

upper bound*

f

€t

**

f

S

s
f

e l

"l

s

20 20

-10 -10 -1 -1 -€kj

-10 -9 -£ J -U -7O
28 1W 28 M

-10 - i f 0 -f -75

0 Ui

1

0 0

"f °

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

'H
93

-i

-J

-J

0

-23

-53

-1

-11

-H
-13

-â

-i

constant

23

50

1

7

n i

26*

1

i

15

7
7

T
1

Transfer

Subproblem

Hodxfied DbjeetiTe fusction XOb, • 10b2 • U - lïy, • (1 • i)y7 • (-1 - î)y}

1»«e «nable

upper bounde

-df°(*dhc)

b ,

0

2 X,

* 0

20

-4

*3 e1

20

-J -10

-1
0

« 2

-5

-i
-i

constant

5

J

1
tb) Primai Subproble»

-<JX«" » 5 + O * 8 - l 3 " O nence

TBAKSFER NO IKPORMATIOH TO THE FBIMAL MftSTER

(c) Puai SubprobXem

dhtM • 5 * 6 - 0 -

TRAMS.FER IBFORKATIOS TO THE DUM, HASTER

conoieting of (uJH UJQ - <iJy) - (5-25,25-0) - (S -25 25)

Step 3.t* Puai Master Proble»

« | > 0 hence

Additien^l Coluna
(orig»n«l fora)

(5

o • U)t3

- 6)t3

• • (o«
p • (oo)

v - (13)

f • 15

Modified constant*

baaic variable

upper bounda

h

s
tl

•î

36j 0

Iil 0

0

ti

K

„7
2

1

0

10

•

5

r l

16

20

20

13

- a

i
5

5

1

0

0

l

0

0

0

1

0

4

-i

7

t
u

2

constant

l

i

12

13
2

1

Additiooal
(original

( a * o *

t - 1 •

(- i -

c - (0)

i • (5 0

m • (7)

h • 12

Column
fora)

Kit,

5 K
25)^
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rtwüfied objectiv* fonction uttdwwg

b u i e vtrUble

upp«r tanad»

Ti

b, »a T, J, 7 , «, e,

20 20 20

0 - 5 0 - î | - | -10 -5

-1 -1
0 'i

0

0

3

flf'••• 0 « 0 * 10 - 13 • - 3 < 0

3TOBMATI0K TO TEE fBIWU, HASTHt

eoaeistlfi« of fob1 + Br»1 • ri • i
te ) P u l Eubtrablt»

«b'* • o * T * 0 - 7 • 0

TO THE DUAL KJUBTIB

Bt«> 2.»> P r i a » ! K»»t9r

baaic w i * b l e

upper tousds

f

• j

• l
* j

f

e,

* !
%*

• i •

-10 -l

-10 -l

20

^ o

3 °

20

- | -75 -

-] -78 -l

J 0 3

-£

-J
1»

\ -3 0

0

1

0

0

0

1

0

0

-1

-1
-i

0

-J
-J
0

-13

-6

- !
- i

10

-10

-8

-1

15

7

l
l

12

o

L

1

Step 1.6 Tramfer Dec i t ion

f - h « 1 2 - 1 2 « O fcecee eo t o Step ^

lBter»eûi»te eo lu t ion* corr«spcsdin£ t o e&eb t . t r e e i ven by:

for prim&l d i r e c t i o n for dual directioc

S
*?

s

4
0

1
0

>2

0

0

0

0

c

0

0

0

y,

?
18

}
3

*2

0

0

0

0

0

15

0

0

* l

2

20

U

5

*2

2

0

0

0

2 - 3

1 • *

COlUB
JHAI fora)

(3 • 0 <

(3 ^

(6

• • (el)
P • (0 0)

l l ^̂
t2 o

t 3 o

**. °

6 Ï

1

i

0

J

u l

10

3

10

10

U2

h

1
ï

H

pt

2

0

0

0

Pï

0

0

0

0

I j

0

0

0

0

0

0

0

0

«3

0

0

0

0

(i> Achieveà prûml feosible solution

» • »k • (0 0)

b - ttlt\ • (0 0)

c • Ic1^ • (O)

^ - xK - (ti 0}

ï • ly^ i • (3 0 0)

z « Izlt^ - (5 O)

( i i ) Achieved âual feasible solution

s - Ï S ^ . 5(o i) • »(o ;) . (o i)

« - £uJtJ • | (3 |) * 4(10 5) . (h 2)

u - v1 - (f.)

p = tp-tj * ^(0 0) • J{0 O) « (0 0)

q e Iq-\J = ' (0 0 O) • $(Q 0 O) • (0 0 0\

r = r l * (0 0)


