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Résumé. — Le « Principe de décomposition pour des programmes linéaires » est généralisé
au cas des programmes fractionnaires. On démontre que pour résoudre un problème compli-
qué de programmation ayant une fonction fractionnaire\ on doit résoudre une série de
problèmes de programmes linéaires qui sont beaucoup plus simples que le problème original.
Ce principe peut être appliqué à quelques problèmes spéciaux de programmation fractionnelle.

INTRODUCTION

From practical point of view, it becomes necessary to consider the large
structureel programming problems, but even if it is theoretically possible to
solve this problem, in practice it is not always so. There are certain limitations
which restrict the endeavours of the analyst. Chief among these limitations is
the problem of dimensionality. This suggests the idea of developing methods
of solution that should not use simultaneously all the data of the problem. One
such approach is the décomposition principle due to Dantzig and Wolf [1] for
Linear programs. This principle requires the solution of a series of linear pro-
gramming problems of smaller size than the original problem. The problem
considered in [1] has the following structure :

Maximize
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Subject to

2 AJXJ = ho (2)

bj C /= l ,2 , . . . r ) (3)

X ; ^ 0 0" = l»2,...r) (4)

where (i) ^- and Bj are matrices of order (m0 x «,-) and (mj X /z,-) respectively.
(ii) Xj and C,- are vectors having nj components each.
(iii) b0 is an m0 vector and b, ( j = 1, 2,..., r) is an /w, vector.

Williams [2] gave a treatment of the transportation problem by Décompo-
sition. The décomposition of Non linear programming problems was also
considered by a number of authors, mainly, Rosen [3], Whinston [4], Variya [5]
and others.

Hère a large structured linear fractional functionals programming (L.F.F.P.)
problem is considered with the constraints (2), (3) and (4), and it is shown
that for solving this problem we have to solve a series of smaller sized linear
programming problems. The mathematical formulation of the problem is as
follows :

Maximize

Z = « = ! i (5)

Subject to constraints (2) and (3) and (4), where ûj is a vector having rij
components and u & v are given scalars. Apart from the usual assumptions of
L.F.F.P., it is assumed that the set Sj of ail X, ^ 0 satisfying BsXj = bj is a
convex polyhedron. We shall call this as Problem 04).

The paper is dealt into three sections. Section I considers the preliminaries
and the main principle is developed in Section II. In Section III, its appli-
cation is discussed in some special problems.

SECTION I
Preliminaries :

(i) Any point in a convex polyhedron can be written as a convex linear
combination of the extreme points and conversely every such point belongs
tö the polyhedron [6].

(ii) For the L.F.F.P. problem



DECOMPOSITION PRINCIPLE 67

Maximize

Z

d'x + d0

Subject to
Ax = b

x 5* 0

the optimality criterion given by Kantiswarup [7] is that :

A. = [V2(Cj - 2™) - Vt(dj-zf)] < 0

for j = 1, 2,..., n. Hère 4̂ is a (m x n) matrix, C & d are vectors having n
components each, Co and d0 are given scalars. If B is the basis matrix, and CB

and dB are cost vectors corresponding to this basis matrix, then :

= B

b + Co;

Zj2 ) = d

A = [al5 a2).

SECTION

V2 =

-, a„]

n

Let x%j dénote the extreme points of the convex set of feasible solutions to
^y = bj9xj ^ 0 (j = l, 2,... r). Since the set Sj is a convex polyhedron, we

have Xj € Sj if and only if there exist ykj such that

ft/

XJ - 2 YkjX°kJ

Ykj ^ 0 (*: - 1, 2,..., Ay)

* - 1 (6)

In view of (5), the problem 04) is equivalent to the following problem :

Maximize

7 •==• —-*
hi
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Subject to,
r hj

4j = *>o
j=lk=l

kj = h ykj > 0 (7)

Let us write :

fi? = à}x°kj (j = 1, 2,... r ; À; = 1, 2,... A,)

q*y = foy, e,-) ; b = (bOs 1')

Where es is thej t h unit vector having r - components and Y is a r - com-
ponent vector, each component being 1. Then the above problem becomes :

Maximize
F r hj

22-
r r hi

[22
Subject to,

2 2JkjqkJ = b

j = i f c = i

Ykj > 0

We call this as problem (B). It is to be noted that problem (B) has (m0 + r)
r

constraints while problem (̂ 4) has V mi constraints, thus in gênerai requiring
j = 0

a smaller basis than problem (̂ 4). We shall show that it is not necessary to gene-
rate every extreme point, bef ore the problem is solved. p^-, f[)} and fffi can
be generated, as they are used.

We now apply resuit (ii) of Section I to the problem (B). Let B is any basis
matrix (of order (m0 + r)) for problem (B) and yB = B~*bis the basic feasible
solution. Let :

and
a(2> = (a\2\ o<2

2>) = ( t f >)'* H where
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contains the first m0 components of o (1 ) and a(
t
2) contains the last r components

of o ( 1 ) . Similarly o<2) is partitioned. Then

but as in [7]

where a^j ls ^ e Jth component of a ^ . Similarly

/ ƒ (2) Z^) = (d' Gi2)A )X°* — (T(2>

Hence from (8) :

àv - [K2(q - <*{%) - FA(d; - o<2Uy)K + [vAf - vA?] (9)

where Vx and V2 dénote respectively the values of numerator and denomina-
tor of the objective function of problem {S) at the basic feasible solution

Now Max Akj- ^ 0, then the solution under considération is optimal,
ail k &j

otherwise more itérations are required, but

Max àkj = Max [Max A u , . . . , Max Afcr] (10)
Jt & j k k

From (9), for a given j , Max Afcj occurs at an extreme point of Sj. Let
k

Since each extreme point xkj is a basic feasible solution to BJXJ = bj we
have :

Max Afcj. = [ViG2j — ^2^2/] + Zj
k

where Z? is the optimal value of the j t h (j — 1, 2,..., r) problem ;
Maximize Zj

Subject to
= b,-

(11)

Moreover, an optimal basic solution to (11) gives an extreme point x^- for
which the corresponding Akj is maximum over k. Knowing this xjy the cor-
responding p^, fff Sc fff can be generated accordingly. Now

Max Afci - Max [Z? +

-V2a£> (12)

where the max is taken, say, for j = S.

If xr°s is an optimal extreme point of (11) for j — S, and

prs = ^sxr°s, qrs = (p„, es)
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then q,s enters the basis at the next itération. The vector to leave the basis is
determined in the usual way.

Next the problem (B) is transformed to get the new values of i?"1, o<1>,ô 2>
and YB- AS before the new values of a(1) and o(2> are used to détermine a new
set of r linear programming problems. By solving theses r new linear program-
ming problems, we détermine the vector to enter the basis as before. In the
absence of degeneracy (of course degeneracy can be handled in the usual way),
the above process terminâtes in a finite number of steps by the theory of simplex
method for L.F.F.P.

SECTION m

As in case of linear programming [6], [8] the technique developed in Sec-
tion II, can be applied to the following L.F.F.P. Problems :

L — Generalized L.F.F.P. Problem

Subject to

xy ^ 0

where the vectors a,- are not specified but they are restricted such that
Bjüj < bj (j — 1, 2? ..., r). ït is assumed that these inequalities détermine a
convex polyhedron ([6]).

n . — L.F.F.P. with upper bonds on the variables

Maximize

Z
[diXi + é'2x2 + v]

Subject to
A2x2 =

5 x 2 > 0 (13)
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where Al9 A2 are matrices of order (m x nx) and (m X n2) respectively and /
is a («! X nx) identity matrix. This problem can be solved by using the tech-
nique of Section II, as in [8].
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