Rigid τ-crystals
Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 3, pp. 1059-1082.

Nous présentons un analogue en égale charactéristique des F-isocristaux sur un anneau parfait, que nous appelons τ-crystaux rigides. Nous introduisons des polygones de Newton pour les τ-crystaux rigides, et nous montrons que ceux-ci peuvent être étudiés au moyen des τ-crystaux formels, qui sont analogues aux F-crystaux. Ainsi, nous démontrons un analogue du théorème de Grothendieck–Katz pour les τ-crystaux rigides qui proviennent d’un modèle formel.

We present an equicharacteristic analogue of F-isocrystals over perfect rings, which we call rigid τ-crystals. We introduce Newton polygons for rigid τ-crystals and show how these can be studied via formal τ-crystals, the natural analogue of F-crystals. This leads to an analogue of the Grothendieck–Katz theorem for rigid τ-crystals that admit a formal model.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1012
Classification : 14F30, 14G22
Mots clés : $F$-crystals, equicharacteristic, Grothendieck–Katz theorem, rigid geometry
Heuer, Ben 1

1 The London School of Geometry and Number Theory Department of Mathematics University College London Gower Street, London WC1E 6BT, UK
@article{JTNB_2017__29_3_1059_0,
     author = {Heuer, Ben},
     title = {Rigid $\tau $-crystals},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1059--1082},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {3},
     year = {2017},
     doi = {10.5802/jtnb.1012},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1012/}
}
TY  - JOUR
AU  - Heuer, Ben
TI  - Rigid $\tau $-crystals
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2017
SP  - 1059
EP  - 1082
VL  - 29
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1012/
DO  - 10.5802/jtnb.1012
LA  - en
ID  - JTNB_2017__29_3_1059_0
ER  - 
%0 Journal Article
%A Heuer, Ben
%T Rigid $\tau $-crystals
%J Journal de théorie des nombres de Bordeaux
%D 2017
%P 1059-1082
%V 29
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1012/
%R 10.5802/jtnb.1012
%G en
%F JTNB_2017__29_3_1059_0
Heuer, Ben. Rigid $\tau $-crystals. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 3, pp. 1059-1082. doi : 10.5802/jtnb.1012. http://www.numdam.org/articles/10.5802/jtnb.1012/

[1] Böckle, Gebhard Cohomological theory of crystals over function fields and applications, Arithmetic Geometry over Global Function Fields (Advanced Courses in Mathematics - CRM Barcelona), Springer (2014), pp. 1-118

[2] Böckle, Gebhard; Hartl, Urs Uniformizable families of t-motives, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3933-3972 | DOI | Zbl

[3] Bosch, Siegfried Lectures on formal and rigid geometry, Lecture Notes in Mathematics, 2105, Springer, 2014, viii+254 pages | Zbl

[4] Fresnel, Jean; van der Put, Marius Rigid analytic geometry and its applications, Progress in Mathematics, 218, Birkhäuser, 2004, xii+296 pages | Zbl

[5] Grothendieck, Alexander; Dieudonné, Jean A. Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 1-228 | DOI | Zbl

[6] Hartl, Urs Uniformizing the Stacks of Abelian Sheaves, Number fields and function fields – two parallel worlds (Progress in Mathematics), Volume 239, Birkhäuser, 2005, pp. 167-222 | Zbl

[7] Hartl, Urs Period spaces for Hodge structures in equal characteristic, Ann. Math., Volume 173 (2011) no. 3, pp. 1241-1358 | DOI | Zbl

[8] Hartl, Urs; Pink, Richard Vector bundles with a Frobenius structure on the punctured unit disc, Compos. Math., Volume 140 (2004) no. 3, pp. 389-716 | DOI | Zbl

[9] Katz, Nicholas M. Slope filtration of F-crystals, Journées de Géométrie Algébrique de Rennes (Astérisque), Volume 63, Société Mathématique de France, 1979, pp. 113-164 | Zbl

[10] Kedlaya, Kiran S. p-adic differential equations, Cambridge Studies in Advanced Mathematics, 125, Cambridge University Press, 2010, xvii+380 pages | Zbl

[11] Laumon, Gérard Cohomology of Drinfeld modular varieties. Part 1: Geometry, counting of points and local harmonic analysis, Cambridge Studies in Advanced Mathematics, 41, Cambridge University Press, 1996, xiii+344 pages | Zbl

[12] Lütkebohmert, Werner Vektorraumbündel über nichtarchimedischen holomorphen Räumen, Math. Z., Volume 152 (1977), pp. 127-143 | DOI | Zbl

[13] Pál, Ambrus Images of Galois representations (2016) (preprint)

[14] Taguchi, Yuichiro; Wan, Daqing L-functions of ϕ-sheaves and Drinfeld modules, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 755-781 | DOI | Zbl

Cité par Sources :