Nous présentons un analogue en égale charactéristique des -isocristaux sur un anneau parfait, que nous appelons -crystaux rigides. Nous introduisons des polygones de Newton pour les -crystaux rigides, et nous montrons que ceux-ci peuvent être étudiés au moyen des -crystaux formels, qui sont analogues aux -crystaux. Ainsi, nous démontrons un analogue du théorème de Grothendieck–Katz pour les -crystaux rigides qui proviennent d’un modèle formel.
We present an equicharacteristic analogue of -isocrystals over perfect rings, which we call rigid -crystals. We introduce Newton polygons for rigid -crystals and show how these can be studied via formal -crystals, the natural analogue of -crystals. This leads to an analogue of the Grothendieck–Katz theorem for rigid -crystals that admit a formal model.
Révisé le :
Accepté le :
Publié le :
Mots-clés : $F$-crystals, equicharacteristic, Grothendieck–Katz theorem, rigid geometry
@article{JTNB_2017__29_3_1059_0, author = {Heuer, Ben}, title = {Rigid $\tau $-crystals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1059--1082}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1012}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1012/} }
TY - JOUR AU - Heuer, Ben TI - Rigid $\tau $-crystals JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 1059 EP - 1082 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1012/ DO - 10.5802/jtnb.1012 LA - en ID - JTNB_2017__29_3_1059_0 ER -
Heuer, Ben. Rigid $\tau $-crystals. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 3, pp. 1059-1082. doi : 10.5802/jtnb.1012. http://www.numdam.org/articles/10.5802/jtnb.1012/
[1] Cohomological theory of crystals over function fields and applications, Arithmetic Geometry over Global Function Fields (Advanced Courses in Mathematics - CRM Barcelona), Springer (2014), pp. 1-118
[2] Uniformizable families of -motives, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3933-3972 | DOI | Zbl
[3] Lectures on formal and rigid geometry, Lecture Notes in Mathematics, 2105, Springer, 2014, viii+254 pages | Zbl
[4] Rigid analytic geometry and its applications, Progress in Mathematics, 218, Birkhäuser, 2004, xii+296 pages | Zbl
[5] Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 1-228 | DOI | Zbl
[6] Uniformizing the Stacks of Abelian Sheaves, Number fields and function fields – two parallel worlds (Progress in Mathematics), Volume 239, Birkhäuser, 2005, pp. 167-222 | Zbl
[7] Period spaces for Hodge structures in equal characteristic, Ann. Math., Volume 173 (2011) no. 3, pp. 1241-1358 | DOI | Zbl
[8] Vector bundles with a Frobenius structure on the punctured unit disc, Compos. Math., Volume 140 (2004) no. 3, pp. 389-716 | DOI | Zbl
[9] Slope filtration of -crystals, Journées de Géométrie Algébrique de Rennes (Astérisque), Volume 63, Société Mathématique de France, 1979, pp. 113-164 | Zbl
[10] -adic differential equations, Cambridge Studies in Advanced Mathematics, 125, Cambridge University Press, 2010, xvii+380 pages | Zbl
[11] Cohomology of Drinfeld modular varieties. Part 1: Geometry, counting of points and local harmonic analysis, Cambridge Studies in Advanced Mathematics, 41, Cambridge University Press, 1996, xiii+344 pages | Zbl
[12] Vektorraumbündel über nichtarchimedischen holomorphen Räumen, Math. Z., Volume 152 (1977), pp. 127-143 | DOI | Zbl
[13] Images of Galois representations (2016) (preprint)
[14] L-functions of -sheaves and Drinfeld modules, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 755-781 | DOI | Zbl
Cité par Sources :