Dans cet article on montre que pour tout polynôme , de degré , à racines simples sans racine dans , qui est soit de Salem soit cyclotomique, il existe un polynôme expansif unitaire tel que . Cette équation d’association utilise le Théorème A (1995) de Bertin-Boyd d’entrecroisement de conjugués sur le cercle unité. L’ensemble des polynômes expansifs unitaires qui satisfont cette équation d’association contient un semi-groupe commutatif infini. Pour tout dans cet ensemble, caractérisé par un certain critère, un nombre de Salem est produit et codé par un -uplet de nombres rationnels strictement positifs caractérisant la fraction continue de Stieltjes (SITZ) du quotient (alternant) d’Hurwitz correspondant à . Ce codage est une réciproque à la Construction de Salem (1945). La structure de semi-groupe se transporte sur des sous-ensembles de fractions continues de Stieltjes, ainsi que sur des sous-ensembles de nombres de Garsia généralisés.
In this paper we show that for every Salem polynomial or cyclotomic polynomial, having simple roots and no root in , denoted by , deg , there exists a monic expansive polynomial such that . This association equation makes use of Bertin-Boyd’s Theorem A (1995) of interlacing of conjugates on the unit circle. The set of monic expansive polynomials satisfying this association equation contains an infinite commutative semigroup. For any in this set, characterized by a certain criterion, a Salem number is produced and coded by an -tuple of positive rational numbers characterizing the (SITZ) Stieltjes continued fraction of the corresponding Hurwitz quotient (alternant) of . This coding is a converse method to the Construction of Salem (1945). Subsets of Stieltjes continued fractions, and subsets of generalized Garsia numbers, inherit this semigroup structure.
Mots-clés : Pisot number, Salem number, interlacing, Salem polynomial, expansive polynomial, association theorem, Hurwitz polynomial, Hurwitz alternant, Stieltjes continued fraction.
@article{JTNB_2015__27_3_769_0, author = {Guichard, Christelle and Verger-Gaugry, Jean-Louis}, title = {On {Salem} numbers, expansive polynomials and {Stieltjes} continued fractions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {769--804}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.923}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.923/} }
TY - JOUR AU - Guichard, Christelle AU - Verger-Gaugry, Jean-Louis TI - On Salem numbers, expansive polynomials and Stieltjes continued fractions JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 769 EP - 804 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.923/ DO - 10.5802/jtnb.923 LA - en ID - JTNB_2015__27_3_769_0 ER -
%0 Journal Article %A Guichard, Christelle %A Verger-Gaugry, Jean-Louis %T On Salem numbers, expansive polynomials and Stieltjes continued fractions %J Journal de théorie des nombres de Bordeaux %D 2015 %P 769-804 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.923/ %R 10.5802/jtnb.923 %G en %F JTNB_2015__27_3_769_0
Guichard, Christelle; Verger-Gaugry, Jean-Louis. On Salem numbers, expansive polynomials and Stieltjes continued fractions. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 3, pp. 769-804. doi : 10.5802/jtnb.923. http://www.numdam.org/articles/10.5802/jtnb.923/
[1] S. Akiyama & N. Gjini, « On the connectedness of self-affine attractors », Arch. Math. (Basel) 82 (2004), no. 2, p. 153-163. | MR | Zbl
[2] M.-J. Bertin & D. W. Boyd, « A characterization of two related classes of Salem numbers », J. Number Theory 50 (1995), no. 2, p. 309-317. | MR | Zbl
[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse & J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992, With a preface by David W. Boyd, xiv+291 pages. | MR | Zbl
[4] M.-J. Bertin & M. Pathiaux-Delefosse, Conjecture de Lehmer et petits nombres de Salem, Queen’s Papers in Pure and Applied Mathematics, vol. 81, Queen’s University, Kingston, ON, 1989, 144 pages. | MR | Zbl
[5] D. W. Boyd, « Pisot sequences which satisfy no linear recurrence », Acta Arith. 32 (1977), no. 1, p. 89-98. | EuDML | MR | Zbl
[6] —, « Small Salem numbers », Duke Math. J. 44 (1977), no. 2, p. 315-328. | MR
[7] H. Brunotte, « On Garcia numbers », Acta Math. Acad. Paedagog. Nyházi. (N.S.) 25 (2009), no. 1, p. 9-16. | EuDML | MR | Zbl
[8] —, « A class of quadrinomial Garsia numbers », Integers 11B (2011), p. Paper No. A3, 8. | MR
[9] P. Burcsi, « Algorithmic Aspects of Generalized Number Systems », PhD Thesis, School of Informatics, Eőtvős Loránd University, Department of Computer Algebra, Budapest, 2008.
[10] K. G. Hare & M. J. Mossinghoff, « Negative Pisot and Salem numbers as roots of Newman polynomials », Rocky Mountain J. Math. 44 (2014), no. 1, p. 113-138. | MR | Zbl
[11] K. G. Hare & M. Panju, « Some comments on Garsia numbers », Math. Comp. 82 (2013), no. 282, p. 1197-1221. | MR | Zbl
[12] P. Henrici, Applied and computational complex analysis. Vol. 2, Wiley Interscience [John Wiley & Sons], New York-London-Sydney, 1977, Special functions—integral transforms—asymptotics—continued fractions, ix+662 pages. | MR | Zbl
[13] A. Kovács, « Generalized binary number systems », Ann. Univ. Sci. Budapest. Sect. Comput. 20 (2001), p. 195-206. | MR | Zbl
[14] L. Kronecker, « Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten », J. Reine Angew. Math. 53 (1857), p. 173-175. | EuDML | MR | Zbl
[15] P. Lakatos & L. Losonczi, « Circular interlacing with reciprocal polynomials », Math. Inequal. Appl. 10 (2007), no. 4, p. 761-769. | MR | Zbl
[16] D. H. Lehmer, « A machine method for solving polynomial equations. », J. Assoc. Comput. Mach. 8 (1961), p. 151-162 (English). | Zbl
[17] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, Mathematical Surveys, No. 3, American Mathematical Society, New York, N. Y., 1949, ix+183 pages. | MR | Zbl
[18] J. McKee & C. Smyth, « There are Salem numbers of every trace », Bull. London Math. Soc. 37 (2005), no. 1, p. 25-36. | MR | Zbl
[19] —, « Salem numbers and Pisot numbers via interlacing », Canad. J. Math. 64 (2012), no. 2, p. 345-367. | MR
[20] —, « Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros », Cent. Eur. J. Math. 11 (2013), no. 5, p. 882-899. | EuDML | MR | Zbl
[21] C. Pisot, Quelques aspects de la théorie des entiers algébriques, Deuxième édition. Séminaire de Mathématiques Supérieures, No. 5 (Été, vol. 1963, Les Presses de l’Université de Montréal, Montreal, Que., 1966, 182 pages. | MR | Zbl
[22] R. Salem, « A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan », Duke Math. J. 11 (1944), p. 103-108. | MR | Zbl
[23] —, « Power series with integral coefficients », Duke Math. J. 12 (1945), p. 153-172. | MR
[24] C. L. Siegel, « Algebraic integers whose conjugates lie in the unit circle », Duke Math. J. 11 (1944), p. 597-602. | MR | Zbl
[25] T.-J. Stieltjes, « Recherches sur les fractions continues », Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), no. 4, p. J1-J122. | EuDML | MR
Cité par Sources :