Cet article présente des constructions de plusieurs familles de sous-réseaux parfaits de
We construct several families of perfect sublattices with minimum
Mots-clés : Perfect lattice, finite abelian group, projective plane, equiangular system, Schläfli graph, Sidon set, Craig lattice
@article{JTNB_2015__27_3_655_0, author = {Bacher, Roland}, title = {Constructions of some perfect integral lattices with minimum $4$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {655--687}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.918}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.918/} }
TY - JOUR AU - Bacher, Roland TI - Constructions of some perfect integral lattices with minimum $4$ JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 655 EP - 687 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.918/ DO - 10.5802/jtnb.918 LA - en ID - JTNB_2015__27_3_655_0 ER -
%0 Journal Article %A Bacher, Roland %T Constructions of some perfect integral lattices with minimum $4$ %J Journal de théorie des nombres de Bordeaux %D 2015 %P 655-687 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.918/ %R 10.5802/jtnb.918 %G en %F JTNB_2015__27_3_655_0
Bacher, Roland. Constructions of some perfect integral lattices with minimum $4$. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 3, pp. 655-687. doi : 10.5802/jtnb.918. https://www.numdam.org/articles/10.5802/jtnb.918/
[1] N. D. Elkies, « Answer to Mathoverflow question: A curious identity related to finite fields », http://mathoverflow.net/questions/158769.
[2] J. Martinet, Les réseaux parfaits des espaces euclidiens, Mathématiques. [Mathematics], Masson, Paris, 1996, iv+439 pages. | MR | Zbl
[3] —, Perfect lattices in Euclidean spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003, xxii+523 pages. | MR
- Dense Generic Well-Rounded Lattices, SIAM Journal on Applied Algebra and Geometry, Volume 9 (2025) no. 1, p. 154 | DOI:10.1137/22m1532779
- Lattices of Finite Abelian Groups, Discrete Computational Geometry, Volume 65 (2021) no. 3, p. 938 | DOI:10.1007/s00454-019-00163-1
- Spherical 2-Designs and Lattices from Abelian Groups, Discrete Computational Geometry, Volume 61 (2019) no. 1, p. 123 | DOI:10.1007/s00454-017-9909-4
- Lattices from equiangular tight frames, Linear Algebra and its Applications, Volume 510 (2016), p. 395 | DOI:10.1016/j.laa.2016.09.008
Cité par 4 documents. Sources : Crossref