Geometry of the eigencurve at critical Eisenstein series of weight 2
Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 1, pp. 183-197.

Dans cet article, nous montrons que la série d’Eisenstein critique de poids 2, E2critp, définit un point lisse dans la courbe de Hecke (l), où l est un nombre premier différent de p. Nous montrons également que E2critp,ordl définit un point lisse dans la courbe de Hecke pleine full(l) et que le point défini par E2critp,ordl1,ordl2 est non lisse dans la courbe de Hecke pleine full(l1l2). En outre, nous montrons que (l) est étale sur l’espace des poids au point défini par E2critp. En conséquence, nous montrons que la conjecture d’abaissement du niveau de Paulin n’est pas valide pour E2critp,ordl.

In this paper we show that the critical Eisenstein series of weight 2, E2critp, defines a smooth point in the eigencurve (l), where l is a prime different from p. We also show that E2critp,ordl defines a smooth point in the full eigencurve full(l) and E2critp,ordl1,ordl2 defines a non-smooth point in the full eigencurve full(l1l2). Further, we show that (l) is étale over the weight space at the point defined by E2critp. As a consequence, we show that level lowering conjecture of Paulin fails to hold at E2critp,ordl.

DOI : 10.5802/jtnb.898
Classification : 11F85, 11F11, 11F80
Majumdar, Dipramit 1

1 Indian Statistical Institute, Bangalore Centre 8th Mile, Mysore Road, RVCE Post, Bangalore, India 560059
@article{JTNB_2015__27_1_183_0,
     author = {Majumdar, Dipramit},
     title = {Geometry of the eigencurve at critical {Eisenstein} series of weight 2},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {183--197},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {1},
     year = {2015},
     doi = {10.5802/jtnb.898},
     mrnumber = {3346969},
     zbl = {06554402},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.898/}
}
TY  - JOUR
AU  - Majumdar, Dipramit
TI  - Geometry of the eigencurve at critical Eisenstein series of weight 2
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2015
SP  - 183
EP  - 197
VL  - 27
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.898/
DO  - 10.5802/jtnb.898
LA  - en
ID  - JTNB_2015__27_1_183_0
ER  - 
%0 Journal Article
%A Majumdar, Dipramit
%T Geometry of the eigencurve at critical Eisenstein series of weight 2
%J Journal de théorie des nombres de Bordeaux
%D 2015
%P 183-197
%V 27
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.898/
%R 10.5802/jtnb.898
%G en
%F JTNB_2015__27_1_183_0
Majumdar, Dipramit. Geometry of the eigencurve at critical Eisenstein series of weight 2. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 1, pp. 183-197. doi : 10.5802/jtnb.898. https://www.numdam.org/articles/10.5802/jtnb.898/

[1] J. Bellaïche, Critical p-adic L-functions. Invent. Math.189, (2012), 1–60. | MR

[2] J. Bellaïche, Introduction to the Conjecture of Bloch and Kato. Available at http://people.brandeis.edu/~jbellaic/BKHawaii5.pdf.

[3] J. Bellaïche, G. Chenevier, Lissité de la Courbe de Hecke de GL_2 aux Points Eisenstein Critiques. J. Inst. Math. Jussieu.5, (2006), 333–349. | MR | Zbl

[4] J. Bellaïche, G. Chenevier, Families of Galois representations and Selmer groups. Astérisque.324, (2009), xii+314. | Numdam | MR | Zbl

[5] J. Bellaïche, , G. Chenevier, Sous-groupes de GL2 et arbres, J. Algebra.410, (2014),501–525. | MR | Zbl

[6] J.Bellaïche, M. Dimitrov, On the Eigencurve at classical weight one points. ArXiv e-prints (2013).

[7] K.Buzzard, Eigenvarieties. L-functions and Galois representations, London Math. Soc. Lecture Note Ser.320 (2007),59–120. | MR | Zbl

[8] R.Coleman, B.Mazur, The eigencurve. Galois representations in arithmetic algebraic geometry(Durham, 1996), London Math. Soc. Lecture Note Ser.254 (1998),1–113. | MR | Zbl

[9] R. Coleman, F. Q. Gouvêa, N. Jochnowitz, E2, Θ, and overconvergence. Int. Math. Res. Not. (1995), 23–41. | MR | Zbl

[10] M. Dimitrov, E. Ghate, On classical weight one forms in Hida families. J. Théor. Nombres Bordeaux. 24 (2012), 669–690. | Numdam | MR | Zbl

[11] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms. Invent. Math. 85 (1986), 545–613. | MR | Zbl

[12] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153 (2003), 373–454. | MR | Zbl

[13] N. Koblitz, 2-adic and 3-adic ordinals of (1/j)-expansion coefficients for the weight 2 Eisenstein series. Bull. London Math. Soc. 9 (1977), 188–192. | MR | Zbl

[14] T. Miyake, Modular Forms. Springer-Verlag, Berlin. (1989), x+335, translated from the Japanese by Yoshitaka Maeda. | MR | Zbl

[15] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 323 (2008), xvi+825. | MR | Zbl

[16] A. G. M. Paulin, Local to global compatibility on the eigencurve. Proc. Lond. Math. Soc. (3) 103 (2011), 405–440. | MR | Zbl

[17] A. G. M. Paulin, Geometric level raising and lowering on the eigencurve. Manuscripta Math. 137 (2012), 129–157. | MR | Zbl

[18] C. Soulé, On higher p-adic regulators. Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., (1980), Lecture Notes in Math. 854 (1981), 372–401. | MR | Zbl

[19] W. A. Stein, Modular Forms, A Computational Approach. Book available at http://modular.math.washington.edu/books/modform/modform/index.html. | MR

[20] R. Taylor, Galois representations associated to Siegel modular forms of low weight. Duke Math. J. 63 (1991), 281–332. | MR | Zbl

Cité par Sources :