Ternary quadratic forms with rational zeros
Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 97-113.

Formes quadratiques ternaires avec zéros rationnels

Nous considérons les formes quadratiques de Legendre

ϕab(x,y,z)=ax2+by2-z2

et, en particulier, une question posée par J–P. Serre, de compter le nombre de paires d’ entiers 1aA,1bB, pour lesquels la forme ϕab possède un zéro rationnel et non-trivial. Sous certaines conditions faibles sur les entiers a,b, on peut trouver la formule asymptotique pour le nombre de telles formes.

We consider the Legendre quadratic forms

ϕab(x,y,z)=ax2+by2-z2

and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers 1aA,1bB, for which the form ϕab has a non-trivial rational zero. Under certain mild conditions on the integers a,b, we are able to find the asymptotic formula for the number of such forms.

DOI : 10.5802/jtnb.706
Friedlander, John 1 ; Iwaniec, Henryk 2

1 University of Toronto 40 St. George Street Toronto, ON M5S 2E4, Canada
2 Department of Mathematics Rutgers University 110 Frelinghuysen Rd. Piscataway, NJ 08903, USA
@article{JTNB_2010__22_1_97_0,
     author = {Friedlander, John and Iwaniec, Henryk},
     title = {Ternary quadratic forms with rational zeros},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {97--113},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {1},
     year = {2010},
     doi = {10.5802/jtnb.706},
     zbl = {1219.11060},
     mrnumber = {2675875},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.706/}
}
TY  - JOUR
AU  - Friedlander, John
AU  - Iwaniec, Henryk
TI  - Ternary quadratic forms with rational zeros
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 97
EP  - 113
VL  - 22
IS  - 1
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.706/
DO  - 10.5802/jtnb.706
LA  - en
ID  - JTNB_2010__22_1_97_0
ER  - 
%0 Journal Article
%A Friedlander, John
%A Iwaniec, Henryk
%T Ternary quadratic forms with rational zeros
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 97-113
%V 22
%N 1
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.706/
%R 10.5802/jtnb.706
%G en
%F JTNB_2010__22_1_97_0
Friedlander, John; Iwaniec, Henryk. Ternary quadratic forms with rational zeros. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 97-113. doi : 10.5802/jtnb.706. http://www.numdam.org/articles/10.5802/jtnb.706/

[1] Cojocaru A. C. and Murty M. R., An Introduction to Sieve Methods and their Applications. London Math. Soc. Student Texts 66. Cambridge University Press, Cambridge, 2005. | MR | Zbl

[2] Guo C. R., On solvability of ternary quadratic forms. Proc. London Math. Soc. 70 (1995), 241–263. | MR | Zbl

[3] Fouvry É. and Klüners J., On the 4-rank of class groups of quadratic number fields. Invent. Math. 167 (2007), 455–513. | MR | Zbl

[4] Heilbronn H., On the averages of some arithmetical functions of two variables. Mathematika 5 (1958), 1–7. | MR | Zbl

[5] Iwaniec H., Rosser’s sieve. Acta Arith. 36 (1980), 171–202. | MR | Zbl

[6] Serre J–P., A Course of Arithmetic. Springer, New York, 1973. | Zbl

[7] Serre J–P., Spécialisation des éléments de Br2(Q(T1,,Tn)). C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 397–402. | MR | Zbl

[8] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D.R. Heath-Brown. Clarendon Press, Oxford, 1986. | MR | Zbl

  • Mitankin, Vladimir; Nakahara, Masahiro; Streeter, Sam Semi-integral Brauer-Manin obstruction and quadric orbifold pairs, Transactions of the American Mathematical Society, Volume 377 (2024) no. 6, pp. 4435-4480 | DOI:10.1090/tran/9170 | Zbl:7853758
  • Browning, Tim; Lyczak, Julian; Sarapin, Roman Local solubility for a family of quadrics over a split quadric surface, Involve, Volume 16 (2023) no. 2, pp. 331-342 | DOI:10.2140/involve.2023.16.331 | Zbl:1530.14044
  • Wilson, Cameron General bilinear forms in the Jacobi symbol over hyperbolic regions, Monatshefte für Mathematik, Volume 202 (2023) no. 2, pp. 435-451 | DOI:10.1007/s00605-023-01848-9 | Zbl:1539.11113
  • Santens, Tim Integral points on affine quadric surfaces, Journal de Théorie des Nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 141-161 | DOI:10.5802/jtnb.1196 | Zbl:1502.11075
  • Rome, Nick The Hasse norm principle for biquadratic extensions, Journal de Théorie des Nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 947-964 | DOI:10.5802/jtnb.1058 | Zbl:1441.11245
  • Mitankin, V. Failures of the integral Hasse principle for affine quadric surfaces, Journal of the London Mathematical Society. Second Series, Volume 95 (2017) no. 3, pp. 1035-1052 | DOI:10.1112/jlms.12047 | Zbl:1409.11025
  • Chakraborty, Kalyan; Jiménez Urroz, Jorge; Pappalardi, Francesco Pairs of integers which are mutually squares, Science China. Mathematics, Volume 60 (2017) no. 9, pp. 1633-1646 | DOI:10.1007/s11425-016-0343-1 | Zbl:1394.11003
  • de la Bretèche, Régis; Browning, Tim Counter-examples to the Hasse principle among certain coflasque tori, Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 25-44 | DOI:10.5802/jtnb.857 | Zbl:1365.11035
  • Fouvry, Étienne; Luca, Florian; Pappalardi, Francesco; Shparlinski, Igor E. Counting dihedral and quaternionic extensions, Transactions of the American Mathematical Society, Volume 363 (2011) no. 6, pp. 3233-3253 | DOI:10.1090/s0002-9947-2011-05233-5 | Zbl:1235.11097

Cité par 9 documents. Sources : zbMATH