Formes quadratiques ternaires avec zéros rationnels
Nous considérons les formes quadratiques de Legendre
et, en particulier, une question posée par J–P. Serre, de compter le nombre de paires d’ entiers
We consider the Legendre quadratic forms
and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers
@article{JTNB_2010__22_1_97_0, author = {Friedlander, John and Iwaniec, Henryk}, title = {Ternary quadratic forms with rational zeros}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {97--113}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.706}, zbl = {1219.11060}, mrnumber = {2675875}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.706/} }
TY - JOUR AU - Friedlander, John AU - Iwaniec, Henryk TI - Ternary quadratic forms with rational zeros JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 97 EP - 113 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.706/ DO - 10.5802/jtnb.706 LA - en ID - JTNB_2010__22_1_97_0 ER -
%0 Journal Article %A Friedlander, John %A Iwaniec, Henryk %T Ternary quadratic forms with rational zeros %J Journal de théorie des nombres de Bordeaux %D 2010 %P 97-113 %V 22 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.706/ %R 10.5802/jtnb.706 %G en %F JTNB_2010__22_1_97_0
Friedlander, John; Iwaniec, Henryk. Ternary quadratic forms with rational zeros. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 97-113. doi : 10.5802/jtnb.706. http://www.numdam.org/articles/10.5802/jtnb.706/
[1] Cojocaru A. C. and Murty M. R., An Introduction to Sieve Methods and their Applications. London Math. Soc. Student Texts 66. Cambridge University Press, Cambridge, 2005. | MR | Zbl
[2] Guo C. R., On solvability of ternary quadratic forms. Proc. London Math. Soc. 70 (1995), 241–263. | MR | Zbl
[3] Fouvry É. and Klüners J., On the 4-rank of class groups of quadratic number fields. Invent. Math. 167 (2007), 455–513. | MR | Zbl
[4] Heilbronn H., On the averages of some arithmetical functions of two variables. Mathematika 5 (1958), 1–7. | MR | Zbl
[5] Iwaniec H., Rosser’s sieve. Acta Arith. 36 (1980), 171–202. | MR | Zbl
[6] Serre J–P., A Course of Arithmetic. Springer, New York, 1973. | Zbl
[7] Serre J–P., Spécialisation des éléments de
[8] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D.R. Heath-Brown. Clarendon Press, Oxford, 1986. | MR | Zbl
- Semi-integral Brauer-Manin obstruction and quadric orbifold pairs, Transactions of the American Mathematical Society, Volume 377 (2024) no. 6, pp. 4435-4480 | DOI:10.1090/tran/9170 | Zbl:7853758
- Local solubility for a family of quadrics over a split quadric surface, Involve, Volume 16 (2023) no. 2, pp. 331-342 | DOI:10.2140/involve.2023.16.331 | Zbl:1530.14044
- General bilinear forms in the Jacobi symbol over hyperbolic regions, Monatshefte für Mathematik, Volume 202 (2023) no. 2, pp. 435-451 | DOI:10.1007/s00605-023-01848-9 | Zbl:1539.11113
- Integral points on affine quadric surfaces, Journal de Théorie des Nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 141-161 | DOI:10.5802/jtnb.1196 | Zbl:1502.11075
- The Hasse norm principle for biquadratic extensions, Journal de Théorie des Nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 947-964 | DOI:10.5802/jtnb.1058 | Zbl:1441.11245
- Failures of the integral Hasse principle for affine quadric surfaces, Journal of the London Mathematical Society. Second Series, Volume 95 (2017) no. 3, pp. 1035-1052 | DOI:10.1112/jlms.12047 | Zbl:1409.11025
- Pairs of integers which are mutually squares, Science China. Mathematics, Volume 60 (2017) no. 9, pp. 1633-1646 | DOI:10.1007/s11425-016-0343-1 | Zbl:1394.11003
- Counter-examples to the Hasse principle among certain coflasque tori, Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 25-44 | DOI:10.5802/jtnb.857 | Zbl:1365.11035
- Counting dihedral and quaternionic extensions, Transactions of the American Mathematical Society, Volume 363 (2011) no. 6, pp. 3233-3253 | DOI:10.1090/s0002-9947-2011-05233-5 | Zbl:1235.11097
Cité par 9 documents. Sources : zbMATH