L’analogue local de la conjecture de Grothendieck peut être formulé comme une équivalence entre la catégorie des corps
A local analogue of the Grothendieck Conjecture is an equivalence between the category of complete discrete valuation fields
@article{JTNB_2010__22_1_1_0, author = {Abrashkin, Victor}, title = {Modified proof of a local analogue of the {Grothendieck} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--50}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.703}, zbl = {1229.11148}, mrnumber = {2675872}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.703/} }
TY - JOUR AU - Abrashkin, Victor TI - Modified proof of a local analogue of the Grothendieck conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 1 EP - 50 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.703/ DO - 10.5802/jtnb.703 LA - en ID - JTNB_2010__22_1_1_0 ER -
%0 Journal Article %A Abrashkin, Victor %T Modified proof of a local analogue of the Grothendieck conjecture %J Journal de théorie des nombres de Bordeaux %D 2010 %P 1-50 %V 22 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.703/ %R 10.5802/jtnb.703 %G en %F JTNB_2010__22_1_1_0
Abrashkin, Victor. Modified proof of a local analogue of the Grothendieck conjecture. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 1-50. doi : 10.5802/jtnb.703. https://www.numdam.org/articles/10.5802/jtnb.703/
[1] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. II. Proceeding of Steklov Math. Inst. 208 (1995), 18–69. | MR | Zbl
[2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. III. Izvestiya RAN, ser. math. 62 (1998), 3–48. | MR | Zbl
[3] V.A. Abrashkin, A local analogue of the Grothendieck conjecture. Int. J. of Math. 11 (2000), 3–43. | MR | Zbl
[4] P. Berthelot, W. Messing, Théorie de Deudonné Cristalline III: Théorèmes d’Équivalence et de Pleine Fidélité. The Grotendieck Festschrift. A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, volume 1, eds P.Cartier etc. Birkhauser, 1990, 173–247. | MR | Zbl
[5] J.-M. Fontaine, Representations
[6] K. Iwasawa, Local class field theory. Oxford University Press, 1986 | MR | Zbl
[7] Sh.Mochizuki, A version of the Grothendieck conjecture for
[8] J.-P.Serre, Lie algebras and Lie groups. Lectures given at Harvard University. New-York-Amsterdam, Bevjamin, 1965. | MR | Zbl
[9] I.R. Shafarevich. A general reciprocity law (In Russian). Mat. Sbornik 26 (1950), 113–146; Engl. transl. in Amer. Math. Soc. Transl. Ser. 2, volume 2 (1956), 59–72. | MR | Zbl
[10] J.-P. Wintenberger, Extensions abéliennes et groupes d’automorphismes de corps locaux, C. R. Acad. Sc. Paris, Série A 290 (1980), 201–203. | MR | Zbl
[11] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; application. Ann. Sci. Ec. Norm. Super., IV. Ser 16 (1983), 59–89. | Numdam | MR | Zbl
Cité par Sources :