Nous prouvons un analogue local d’un théorème de J. Martinet sur la norme absolue du discrimant relatif d’une extension de corps de nombres. Ce résultat peut être vu comme un énoncé sur les unités
We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about
@article{JTNB_2009__21_3_735_0, author = {Pisolkar, Supriya}, title = {Absolute norms of $p$-primary units}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {735--742}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.699}, zbl = {1214.11131}, mrnumber = {2605544}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.699/} }
TY - JOUR AU - Pisolkar, Supriya TI - Absolute norms of $p$-primary units JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 735 EP - 742 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.699/ DO - 10.5802/jtnb.699 LA - en ID - JTNB_2009__21_3_735_0 ER -
Pisolkar, Supriya. Absolute norms of $p$-primary units. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 735-742. doi : 10.5802/jtnb.699. https://www.numdam.org/articles/10.5802/jtnb.699/
[1] Dalawat C.S., Local discriminants, kummerian extensions, and abelian curves. ArXiv:0711.3878.
[2] Fesenko, I. B., Vostokov, S. V., Local fields and their extensions. Second edition. Translations of Mathematical Monographs 121, AMS Providence, RI, 2001. | MR | Zbl
[3] Hasse H., Number theory. Classics in Mathematics. Springer-Verlag, Berlin, 2002. | MR | Zbl
[4] Martinet, J., Les discriminants quadratiques et la congruence de Stickelberger. Sém. Théor. Nombres Bordeaux (2) 1 (1989), no. 1, 197–204. | Numdam | MR | Zbl
[5] Neukirch, J., Class field theory. Grund. der Math. Wiss. 280. Springer-Verlag, Berlin, 1986. | MR | Zbl
[6] Jean-Pierre Serre, Local Fields. GTM 67, Springer-Verlag, 1979. | MR | Zbl
Cité par Sources :