Un réseau fortement modulaire est dit s-extrémal, s’il maximise le minimum du réseau et son ombre simultanément. La dimension des réseaux s-extrémaux dont le minimum est pair peut être bornée par la théorie des formes modulaires. En particulier de tels réseaux sont extrémaux.
S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.
@article{JTNB_2007__19_3_683_0, author = {Nebe, Gabriele and Schindelar, Kristina}, title = {S-extremal strongly modular lattices}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {683--701}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.608}, zbl = {1196.11097}, mrnumber = {2388794}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.608/} }
TY - JOUR AU - Nebe, Gabriele AU - Schindelar, Kristina TI - S-extremal strongly modular lattices JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 683 EP - 701 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.608/ DO - 10.5802/jtnb.608 LA - en ID - JTNB_2007__19_3_683_0 ER -
%0 Journal Article %A Nebe, Gabriele %A Schindelar, Kristina %T S-extremal strongly modular lattices %J Journal de théorie des nombres de Bordeaux %D 2007 %P 683-701 %V 19 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.608/ %R 10.5802/jtnb.608 %G en %F JTNB_2007__19_3_683_0
Nebe, Gabriele; Schindelar, Kristina. S-extremal strongly modular lattices. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 683-701. doi : 10.5802/jtnb.608. http://www.numdam.org/articles/10.5802/jtnb.608/
[1] N.G. de Bruijn, Asymptotic methods in analysis. 2nd edition, North Holland (1961). | Zbl
[2] J. Cannon et al., The Magma Computational Algebra System for Algebra, Number Theory and Geometry. Published electronically at http://magma.maths.usyd.edu.au/magma/.
[3] J. H. Conway, N. J. A. Sloane, A note on optimal unimodular lattices. J. Number Theory 72 (1998), no. 2, 357–362. | MR | Zbl
[4] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups. Springer, 3. edition, 1998. | Zbl
[5] N. D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5, 643–651. | MR | Zbl
[6] P. Gaborit, A bound for certain s-extremal lattices and codes. Archiv der Mathematik 89 (2007), 143–151. | MR | Zbl
[7] M. Kneser, Klassenzahlen definiter quadratischer Formen. Archiv der Math. 8 (1957), 241–250. | MR | Zbl
[8] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68–76. | MR | Zbl
[9] G. Nebe, Strongly modular lattices with long shadow. J. T. Nombres Bordeaux 16 (2004), 187–196. | Numdam | MR | Zbl
[10] G. Nebe, B. Venkov, Unimodular lattices with long shadow. J. Number Theory 99 (2003), 307–317. | MR | Zbl
[11] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997), 55–65. | Zbl
[12] E.M. Rains, New asymptotic bounds for self-dual codes and lattices. IEEE Trans. Inform. Theory 49 (2003), no. 5, 1261–1274. | MR | Zbl
[13] E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359–389. | MR | Zbl
[14] R. Scharlau, R. Schulze-Pillot, Extremal lattices. In Algorithmic algebra and number theory, Herausgegeben von B. H. Matzat, G. M. Greuel, G. Hiss. Springer, 1999, 139–170. | MR | Zbl
[15] K. Schindelar, Stark modulare Gitter mit langem Schatten. Diplomarbeit, Lehrstuhl D für Mathematik, RWTH Aachen (2006).
[16] E.T. Whittaker, G.N. Watson, A course of modern analysis (4th edition) Cambridge University Press, 1963. | MR
Cité par Sources :