Nous nous intéressons à la question suivante : À quelles conditions un groupe
We are going to deal with the following question: Which groups can be the Galois group of an irreducible polynomial with rational coefficients whose distinct roots satisfy a linear relation
@article{JTNB_2007__19_2_473_0, author = {Lalande, Franck}, title = {La relation lin\'eaire $a=b+c+\cdots +t$ entre les racines d{\textquoteright}un polyn\^ome}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {473--484}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.597}, mrnumber = {2394897}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/jtnb.597/} }
TY - JOUR AU - Lalande, Franck TI - La relation linéaire $a=b+c+\cdots +t$ entre les racines d’un polynôme JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 473 EP - 484 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.597/ DO - 10.5802/jtnb.597 LA - fr ID - JTNB_2007__19_2_473_0 ER -
%0 Journal Article %A Lalande, Franck %T La relation linéaire $a=b+c+\cdots +t$ entre les racines d’un polynôme %J Journal de théorie des nombres de Bordeaux %D 2007 %P 473-484 %V 19 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.597/ %R 10.5802/jtnb.597 %G fr %F JTNB_2007__19_2_473_0
Lalande, Franck. La relation linéaire $a=b+c+\cdots +t$ entre les racines d’un polynôme. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 473-484. doi : 10.5802/jtnb.597. http://www.numdam.org/articles/10.5802/jtnb.597/
[1] J. D. Dixon, Polynomials with relations between their roots. Acta Arithmetica 82.3 (1997), 293–302. | MR | Zbl
[2] J. D. Dixon and B. Mortimer, Permutation Groups. Springer, New York, 1996. | MR | Zbl
[3] M. Drmota and M. Skalba, Relations between polynomial roots. Acta Arithmetica 71.1 (1995), 65-77. | MR | Zbl
[4] K. Girstmair, Linear dependence of zeros of polynomials and construction of primitive elements. Manuscripta Math. 39 (1982), 81–97. | MR | Zbl
[5] K. Girstmair, Linear relations between roots of polynomials. Acta Arithmetica 89.1 (1999), 53–96. | MR | Zbl
[6] K. Girstmair, The Galois relation
[7] D. G. Higman, Finite permutation groups of rank
[8] D. G. Higman, Primitive rank
[9] F. Lalande, Relations linéaires entre les racines d’un polynôme et anneaux de Schur. Ann. Sci. Math. Québec 27.2 (2003), 169–175. | Zbl
[10] H. B. Mann, On linear relations between roots of unity. Mathematika 12 (1965), 107–117. | MR | Zbl
- Linear relations with conjugates of a Salem number, Journal de Théorie des Nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 179-191 | DOI:10.5802/jtnb.1116 | Zbl:1452.11129
- About the Galois relation
. Appendix by Joseph Oesterlé, Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 661-673 | DOI:10.5802/jtnb.738 | Zbl:1254.12007
Cité par 2 documents. Sources : zbMATH