On connait très peu à propos du groupe de Galois de la -extension maximale non-ramifiée en dehors d’un ensemble fini de nombres premiers d’un corps de nombres lorsque les nombres premiers au-dessus de ne sont pas dans . Nous décrivons des méthodes pour calculer ce groupe quand il est fini et ses propriétées conjecturales quand il est infini.
Very little is known regarding the Galois group of the maximal -extension unramified outside a finite set of primes of a number field in the case that the primes above are not in . We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.
@article{JTNB_2007__19_1_59_0, author = {Boston, Nigel}, title = {Galois groups of tamely ramified $ p$-extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--70}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.573}, zbl = {1123.11038}, mrnumber = {2332053}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.573/} }
TY - JOUR AU - Boston, Nigel TI - Galois groups of tamely ramified $ p$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 59 EP - 70 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.573/ DO - 10.5802/jtnb.573 LA - en ID - JTNB_2007__19_1_59_0 ER -
Boston, Nigel. Galois groups of tamely ramified $ p$-extensions. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 59-70. doi : 10.5802/jtnb.573. http://www.numdam.org/articles/10.5802/jtnb.573/
[1] M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192. | MR | Zbl
[2] W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880. | MR | Zbl
[3] Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341. | MR | Zbl
[4] Y.Barnea, A.Shalev, Hausdorff dimension, pro- groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091. | MR | Zbl
[5] L.Bartholdi, M.R.Bush, Maximal unramified -extensions of imaginary quadratic fields and . To appear in J. Number Theory.
[6] L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J. | MR | Zbl
[7] W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993.
[8] N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169. | MR | Zbl
[9] N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50. | MR | Zbl
[10] N.Boston, Embedding -groups in groups generated by involutions. J. Algebra 300 (2006), 73–76. | MR | Zbl
[11] N.Boston, C.R.Leedham-Green, Explicit computation of Galois -groups unramified at . J. Algebra 256 (2002), 402–413. | MR | Zbl
[12] N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179. | MR | Zbl
[13] D.J.Broadhurst, On the enumeration of irreducible -fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear).
[14] M.R.Bush, Computation of Galois groups associated to the -class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325. | MR | Zbl
[15] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984. | MR | Zbl
[16] H.Cohn, J.C.Lagarias, On the existence of fields governing the -invariants of the classgroup of as varies. Math. Comp. 37 (1983), 711–730. | MR | Zbl
[17] B.Eick, H.Koch, On maximal -extensions of with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear). | MR
[18] J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong. | Zbl
[19] J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45. | MR | Zbl
[20] E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102. | MR | Zbl
[21] R.Grigorchuk, Just infinite branch groups. New Horizons in pro- Groups, Birkhauser, Boston 2000. | MR | Zbl
[22] R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246. | MR | Zbl
[23] F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423. | MR | Zbl
[24] G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67. | Zbl
[25] H.Kisilevsky, Number fields with class number congruent to and Hilbert’s theorem . J. Number Theory 8 (1976), no. 3, 271–279 | Zbl
[26] H.Koch, Galois theory of -extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. | MR | Zbl
[27] H.Koch, B.Venkov, The -tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13. | MR | Zbl
[28] J.Labute, Mild pro--groups and Galois groups of -extensions of . J. Reine Angew. Math. (to appear). | MR | Zbl
[29] A.Lubotzky, Group presentations, -adic analytic groups and lattices in . Ann. Math. 118 (1983), 115–130. | MR | Zbl
[30] J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418. | MR | Zbl
[31] E.A.O’Brien, The -group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698. | Zbl
[32] R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113. | MR | Zbl
[33] I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. | Numdam | MR
[34] M.Stoll, Galois groups over of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244. | MR | Zbl
[35] G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146. | MR | Zbl
[36] E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro- groups, Birkhaüser Boston, Boston, MA, 2000. | MR | Zbl
[37] A.Zubkov, Non-abelian free pro--group are not represented by -matrices. Siberian Math.J, 28 (1987), 64–69. | Zbl
Cité par Sources :