On the Galois group of generalized Laguerre polynomials
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 517-525.

En utilisant la théorie des polygones de Newton, on obtient un critère simple pour montrer que le groupe de Galois d’un polynôme soit “grand.” Si on fixe α- <0 , Filaseta et Lam ont montré que le Polynôme Generalisé de Laguerre L n (α) (x)= j=0 n n+α n-j(-x) j /j! est irréductible quand le degré n est assez grand. On utilise notre critère afin de montrer que, sous ces hypothèses, le groupe de Galois de L n (α) (x) est soit le groupe alterné, soit le groupe symétrique, de degré n, généralisant des résultats de Schur pour α=0,1,±1 2,-1-n.

Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α- <0 , Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L n (α) (x)= j=0 n n+α n-j(-x) j /j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L n (α) (x) is either the alternating or symmetric group on n letters, generalizing results of Schur for α=0,1,±1 2,-1-n.

DOI : 10.5802/jtnb.505
Mots clés : Galois group, Generalized Laguerre Polynomial, Newton Polygon
Hajir, Farshid 1

1 Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003-9318 USA
@article{JTNB_2005__17_2_517_0,
     author = {Hajir, Farshid},
     title = {On the {Galois} group of generalized {Laguerre} polynomials},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {517--525},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.505},
     zbl = {1094.11042},
     mrnumber = {2211305},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.505/}
}
TY  - JOUR
AU  - Hajir, Farshid
TI  - On the Galois group of generalized Laguerre polynomials
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 517
EP  - 525
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.505/
DO  - 10.5802/jtnb.505
LA  - en
ID  - JTNB_2005__17_2_517_0
ER  - 
%0 Journal Article
%A Hajir, Farshid
%T On the Galois group of generalized Laguerre polynomials
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 517-525
%V 17
%N 2
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.505/
%R 10.5802/jtnb.505
%G en
%F JTNB_2005__17_2_517_0
Hajir, Farshid. On the Galois group of generalized Laguerre polynomials. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 517-525. doi : 10.5802/jtnb.505. http://www.numdam.org/articles/10.5802/jtnb.505/

[1] N. H. Abel, Oeuvres Complètes. Tome 2, Grondahl & Son, Christiania, 1881.

[2] R. F. Coleman, On the Galois groups of the exponential Taylor polynomials. Enseign. Math. (2) 33 (1987), no. 3-4, 183–189. | MR | Zbl

[3] W. Feit, A ˜ 5 and A ˜ 7 are Galois groups over number fields. J. Algebra 104 (1986), no. 2, 231–260. | MR | Zbl

[4] M. Filaseta, T.-Y. Lam, On the irreducibility of the Generalized Laguerre polynomials. Acta Arith. 105 (2002), no. 2, 177–182. | MR | Zbl

[5] M. Filaseta, R. L. Williams, Jr., On the irreducibility of a certain class of Laguerre polynomials. J. Number Theory 100 (2003), no. 2, 229–250. | MR | Zbl

[6] P. X. Gallagher, The large sieve and probabilistic Galois theory, in Analytic number theory. (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 91–101. Amer. Math. Soc., Providence, R.I., 1973. | MR | Zbl

[7] S. Gao, Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237 (2001), no. 2, 501–520. | MR | Zbl

[8] F. Q. Gouvêa, p-adic numbers. Second edition, Springer, Berlin, 1997. | MR | Zbl

[9] R. Gow, Some Generalized Laguerre polynomials whose Galois groups are the Alternating groups. J. Number Theory 31 (1989), no. 2, 201–207. | MR | Zbl

[10] F. Hajir, Some A n ˜-extensions obtained from Generalized Laguerre polynomials. J. Number Theory 50 (1995), no. 2, 206–212. | MR | Zbl

[11] F. Hajir, Algebraic properties of a family of Generalized Laguerre Polynomials. Preprint, 2004, 19pp.

[12] F. Hajir, S. Wong, Specializations of one-parameter families of polynomials. Ann. Inst. Fourier (Grenoble), to appear, 26pp. | Numdam | MR | Zbl

[13] M. Hall, The theory of groups. Macmillan, 1959. | MR | Zbl

[14] C. Jordan, Sur la limite de transitivité des groupes non alternés. Bull. Soc. Math. France, 1 (1872-3), 40–71. | Numdam | MR

[15] M. Kölle, P. Schmid, Computing Galois groups by means of Newton polygons. Acta Arith. 115 (2004), no. 1, 71–84. | MR | Zbl

[16] T. Kondo, Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan 47 (1995), no. 1, 31–36. | MR | Zbl

[17] E. Laguerre, Sur l’intégrale 0 e -x dx x. Bull. Soc. math. France 7 (1879) 72–81. Reprinted in Oeuvres, Vol. 1. New York: Chelsea, 428–437, 1971. | Numdam

[18] B. H. Matzat, J. McKay, K. Yokoyama, Algorithmic methods in Galois theory. J. Symbolic Comput. 30 (2000), no. 6. Academic Press, Oxford, 2000. pp. 631–872. | MR | Zbl

[19] J. Mott, Eisenstein-type irreducibility criteria. Zero-dimensional commutative rings (Knoxville, TN, 1994), 307–329, Lecture Notes in Pure and Appl. Math. 171, Dekker, New York, 1995. | MR | Zbl

[20] G. Pólya, G. Szegő, Problems and theorems in analysis. Vol. II. Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer, New York, 1976. | MR | Zbl

[21] I. Schur, Gleichungen Ohne Affekt. Gesammelte Abhandlungen. Band III. Springer, Berlin, 1973, pp. 191–197. | MR

[22] I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome. Gesammelte Abhandlungen. Band III, Springer, Berlin, 1973, pp. 227–233. | Zbl

[23] E. Sell, On a certain family of generalized Laguerre polynomials. J. Number Theory 107 (2004), no. 2, 266–281. | MR | Zbl

[24] N. J. Sonin, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16 (1880), 1–80. | MR

Cité par Sources :