On an approximation property of Pisot numbers II
Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 239-249.

Soit q un nombre complexe, m un entier positif et lm(q)=inf{P(q),Pm[X],P(q)0}, où m[X] désigne l’ensemble des polynômes à coefficients entiers de valeur absolue m. Nous déterminons dans cette note le maximum des quantités lm(q) quand q décrit l’intervalle ]m,m+1[. Nous montrons aussi que si q est un nombre non-réel de module >1, alors q est un nombre de Pisot complexe si et seulement si lm(q)>0 pour tout m.

Let q be a complex number, m be a positive rational integer and lm(q)=inf{P(q),Pm[X],P(q)0}, where m[X] denotes the set of polynomials with rational integer coefficients of absolute value m. We determine in this note the maximum of the quantities lm(q) when q runs through the interval ]m,m+1[. We also show that if q is a non-real number of modulus >1, then q is a complex Pisot number if and only if lm(q)>0 for all m.

DOI : 10.5802/jtnb.446
Zaïmi, Toufik 1

1 King Saud University Dept. of Mathematics P. O. Box 2455 Riyadh 11451, Saudi Arabia
@article{JTNB_2004__16_1_239_0,
     author = {Za{\"\i}mi, Toufik},
     title = {On an approximation property of {Pisot} numbers {II}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {239--249},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {1},
     year = {2004},
     doi = {10.5802/jtnb.446},
     zbl = {02184644},
     mrnumber = {2145586},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.446/}
}
TY  - JOUR
AU  - Zaïmi, Toufik
TI  - On an approximation property of Pisot numbers II
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
SP  - 239
EP  - 249
VL  - 16
IS  - 1
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.446/
DO  - 10.5802/jtnb.446
LA  - en
ID  - JTNB_2004__16_1_239_0
ER  - 
%0 Journal Article
%A Zaïmi, Toufik
%T On an approximation property of Pisot numbers II
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 239-249
%V 16
%N 1
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.446/
%R 10.5802/jtnb.446
%G en
%F JTNB_2004__16_1_239_0
Zaïmi, Toufik. On an approximation property of Pisot numbers II. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 239-249. doi : 10.5802/jtnb.446. http://www.numdam.org/articles/10.5802/jtnb.446/

[1] K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted.

[2] D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math. Systems Theory 27 (1994), 275–282. | MR | Zbl

[3] P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 No. 238 (2002), 767–780. | MR | Zbl

[4] D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64. | MR | Zbl

[5] Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 33–39. | MR | Zbl

[6] P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions 1=i1q-ni and related problems. Bull. Soc. Math. France 118 (1990), 377–390. | Numdam | MR | Zbl

[7] P. Erdös, I. Joó and V. Komornik, On the sequence of numbers of the form ε0+ε1q+...+εnqn εi{0,1}. Acta Arith. 83 (1998), 201–210. | MR | Zbl

[8] P. Erdös, I. Joó and F. J. Schnitzer, On Pisot numbers. Ann. Univ. Sci. Budapest Eotvos Sect. Math. 39 (1996), 95–99. | MR | Zbl

[9] P. Erdös and V. Komornik, Developments in non integer bases. Acta Math. Hungar. 79 (1998), 57–83. | MR | Zbl

[10] C. Frougny, Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60. | MR | Zbl

[11] V. Komornik, P. Loreti and M. Pedicini, An approximation property of Pisot numbers. J. Number Theory 80 (2000), 218–237. | MR | Zbl

[12] W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. | MR | Zbl

[13] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477–493. | MR | Zbl

[14] B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477–498. | MR | Zbl

[15] T. Zaïmi, On an approximation property of Pisot numbers. Acta Math. Hungar. 96 (4) (2002), 309–325. | MR | Zbl

  • Tavazoei, Mohammad Saleh Nonminimality of the Realizations and Possessing State Matrices With Integer Elements in Linear Discrete-Time Controllers, IEEE Transactions on Automatic Control, Volume 68 (2023) no. 6, p. 3698 | DOI:10.1109/tac.2022.3192811
  • Vávra, Tomáš Periodic representations in Salem bases, Israel Journal of Mathematics, Volume 242 (2021) no. 1, pp. 83-95 | DOI:10.1007/s11856-021-2123-3 | Zbl:1478.11131
  • Hejda, Tomáš; Pelantová, Edita Spectral properties of cubic complex Pisot units, Mathematics of Computation, Volume 85 (2016) no. 297, pp. 401-421 | DOI:10.1090/mcom/2983 | Zbl:1400.11022
  • Zaïmi, Toufik Comments on some results about Pisot numbers, Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 513-524 | DOI:10.5802/jtnb.729 | Zbl:1223.11130
  • Zaïmi, Toufik A remark on the spectra of Pisot numbers, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 1-2, pp. 5-8 | DOI:10.1016/j.crma.2008.11.010 | Zbl:1210.11113
  • Zaïmi, Toufik On numbers having finite beta-expansions, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 5, pp. 1659-1668 | DOI:10.1017/s0143385708000771 | Zbl:1253.11095
  • Zaïmi, Toufik Approximation by polynomials with bounded coefficients, Journal of Number Theory, Volume 127 (2007) no. 1, pp. 103-117 | DOI:10.1016/j.jnt.2007.01.014 | Zbl:1166.11032

Cité par 7 documents. Sources : Crossref, zbMATH