Soit
Let
@article{JTNB_2004__16_1_239_0, author = {Za{\"\i}mi, Toufik}, title = {On an approximation property of {Pisot} numbers {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {239--249}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.446}, zbl = {02184644}, mrnumber = {2145586}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.446/} }
TY - JOUR AU - Zaïmi, Toufik TI - On an approximation property of Pisot numbers II JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 239 EP - 249 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.446/ DO - 10.5802/jtnb.446 LA - en ID - JTNB_2004__16_1_239_0 ER -
Zaïmi, Toufik. On an approximation property of Pisot numbers II. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 239-249. doi : 10.5802/jtnb.446. http://www.numdam.org/articles/10.5802/jtnb.446/
[1] K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted.
[2] D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math. Systems Theory 27 (1994), 275–282. | MR | Zbl
[3] P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 No. 238 (2002), 767–780. | MR | Zbl
[4] D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64. | MR | Zbl
[5] Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 33–39. | MR | Zbl
[6] P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions
[7] P. Erdös, I. Joó and V. Komornik, On the sequence of numbers of the form
[8] P. Erdös, I. Joó and F. J. Schnitzer, On Pisot numbers. Ann. Univ. Sci. Budapest Eotvos Sect. Math. 39 (1996), 95–99. | MR | Zbl
[9] P. Erdös and V. Komornik, Developments in non integer bases. Acta Math. Hungar. 79 (1998), 57–83. | MR | Zbl
[10] C. Frougny, Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60. | MR | Zbl
[11] V. Komornik, P. Loreti and M. Pedicini, An approximation property of Pisot numbers. J. Number Theory 80 (2000), 218–237. | MR | Zbl
[12] W. Parry, On the
[13] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477–493. | MR | Zbl
[14] B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477–498. | MR | Zbl
[15] T. Zaïmi, On an approximation property of Pisot numbers. Acta Math. Hungar. 96 (4) (2002), 309–325. | MR | Zbl
- Nonminimality of the Realizations and Possessing State Matrices With Integer Elements in Linear Discrete-Time Controllers, IEEE Transactions on Automatic Control, Volume 68 (2023) no. 6, p. 3698 | DOI:10.1109/tac.2022.3192811
- Periodic representations in Salem bases, Israel Journal of Mathematics, Volume 242 (2021) no. 1, pp. 83-95 | DOI:10.1007/s11856-021-2123-3 | Zbl:1478.11131
- Spectral properties of cubic complex Pisot units, Mathematics of Computation, Volume 85 (2016) no. 297, pp. 401-421 | DOI:10.1090/mcom/2983 | Zbl:1400.11022
- Comments on some results about Pisot numbers, Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 513-524 | DOI:10.5802/jtnb.729 | Zbl:1223.11130
- A remark on the spectra of Pisot numbers, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 347 (2009) no. 1-2, pp. 5-8 | DOI:10.1016/j.crma.2008.11.010 | Zbl:1210.11113
- On numbers having finite beta-expansions, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 5, pp. 1659-1668 | DOI:10.1017/s0143385708000771 | Zbl:1253.11095
- Approximation by polynomials with bounded coefficients, Journal of Number Theory, Volume 127 (2007) no. 1, pp. 103-117 | DOI:10.1016/j.jnt.2007.01.014 | Zbl:1166.11032
Cité par 7 documents. Sources : Crossref, zbMATH