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Birational transformations and values

of the Riemann zeta-function

par CARLO VIOLA

RÉSUMÉ. Dans sa preuve du théorème d’Apéry sur l’irrationalité
de 03B6(3), Beukers [B] a introduit des intégrales doubles et triples de
fonctions rationnelles donnant de bonnes suites d’approximations
rationnelles de 03B6(2) et 03B6(3). La méthode de Beukers a été, par la
suite, améliorée par Dvornicich et Viola, par Hata, et par Rhin
et Viola. Nous présentons ici un survol de nos résultats récents
([RV2] et [RV3]) sur les mesures d’irrationalité de 03B6(2) et 03B6(3)
obtenus par de nouvelles méthodes algébriques mettant en jeu les
actions de transformations birationnelles et de groupes de per-
mutations sur des intégrales doubles et triples du type de celles
introduites par Beukers. Dans les deux dernières parties, nous
donnons une méthode constructive pour obtenir les transforma-
tions birationnelles appropriées pour les intégrales triples à par-
tir des transformations correspondantes pour les intégrales dou-
bles. Cette méthode est également appliquée pour obtenir l’action
de transformations birationnelles sur des intégrales quadruples du
type de celles introduites par Vasilyev.

ABSTRACT. In his proof of Apery’s theorem on the irrational-
ity of 03B6(3), Beukers [B] introduced double and triple integrals of
suitable rational functions yielding good sequences of rational ap-
proximations to 03B6(2) and 03B6(3). Beukers’ method was subsequently
improved by Dvornicich and Viola, by Hata, and by Rhin and
Viola. We give here a survey of our recent results ([RV2] and
[RV3]) on the irrationality measures of 03B6(2) and 03B6(3) based upon
a new algebraic method involving birational transformations and
permutation groups acting on double and triple integrals of
Beukers’ type. In the last two sections we give a constructive
method to obtain the relevant birational transformations for triple
integrals from the analogous transformations for double integrals,
and we also apply such a method to get birational transformations
acting on quadruple integrals of Vasilyev’s type.
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1. The irrationality measures of ((2) and ((3)
Let 1£( a) denote the least irrationality measure of an irrational number

a, i.e., the least exponent A such that for any e &#x3E; 0 there exists a constant

qo = qa (e) &#x3E; 0 for which

for all integers p and q with q &#x3E; qo. We recall that an irrationality measure
of a number a is usually obtained through the construction of a convenient
sequence (rn~sn) of rational approximations to a, by applying the following
well known

PROPOSITION Let a E and let (rn~, (sin) be sequences of integers satis-
f ying

and

for some positive numbers R and S. Then a ft Q, and

The irrationality measures of ~(2) _ 7r2/6 and of ~(3), where ( denotes
the Riemann zeta-function, were extensively studied in recent years. Since
Apery’s paper [A], several improvements in the search for sequences of
good rational approximations to ((2) and to ((3) were obtained. Thus, the
irrationality measures successively proved for these constants are as follows:
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and

Soon after Ap6ry’s results [A], Beukers [B] found through a different
method the same sequences of rational approximations to ((2) and ((3)
previously obtained by Ap6ry. Beukers’ method was based on the arith-
metical study of the integrals

for ~(2), and

for ~(3), and of their asymptotic behaviours oo. The integrals
(1.3) and (1.4) yield the same inequalities li(((2))  11.85078... and

/-t(((3))  13.41782... found by Ap6ry. We remark that all the succes-
sive improvements (1.1) and (1.2) on Ap6ry’s irrationality measures were
obtained through the study of arithmetic and analytic properties of suitable
variants of Beukers’ integrals (1.3) and (1.4).

2. Beukers’ and Hata’s methods

Beukers’ method [B] employs two different representations for each of
the integrals (1.3) or (1.4). Consider (1.3) for simplicity. By n-fold partial
integration one gets

Therefore, if we denote by the n-th Legendre polynomial defined by
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whence

we obtain

Hence the integral (1.3) can be also expressed in the form

where Pn (x, y) E Z [x, y] is a suitable polynomial (instead of a rational
function as in (1.3)) satisfying degx Pn = degy Pn = n. Using the series
expansion

one sees that (2.2) equals an + bnS(2) with bn E Z and dnan E Z, where
dn = l.c.m.{1, ... , n}. Thus the right side of (2.1), being of type (2.2), shows
that the integral has the required arithmetic form an + bn((2), whereas the
left side of (2.1) is suitable to obtain asymptotic estimates of an + bn( (2) and
Ibn’ as n -+ oo. By combining such estimates with the asymptotic estimate
dn = exp(n+o(n)) given by the Prime Number Theorem, and applying the
Proposition in Section 1, one obtains the irrationality measure

A slightly more complicated argument, again based on repeated partial
integration, yields the analogue of the formula (2.1) for the integral (1.4),
namely
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As above, the right side of this formula is easily seen to be an + 26~(3)
with bn E 7~ and dnan E ?~, while the left side of (2.3) yields the asymptotic
estimates of a~ + 2&#x26;~(3) and Thus one gets the irrationality measure

In [H2] and [H3], Hata improved the above irrationality measures through
the study of variants of the integrals (1.3) and (1.4), where the exponents
of the factors x, 1 - x, y, 1 - y, 1 - xy appearing in the rational function
in (1.3), or of the factors ~, 1 - x, y, 1 - y, z, 1 - z, 1 - (1 - xy)z in (1.4),
are not all equal. For instance, in [H2] Hata considered the integral

and transformed (2.4), by 12n-fold partial integration with respect to x,
into an integral of type (2.2) with deg. Pn = 18~t and degy Pn = 16n, thus
showing that (2.4) equals an + bn~(2) with an E Q and bn E Z. More gen-
erally, k-fold and (12n - k)-fold partial integrations with respect to x and
y respectively, for any k such that 0  k  12n, transform (2.4) into an
integral of type (2.2) divided by ~1 ~"~ , where now y) = Fk (x)Gk (y)
for suitable Legendre-type polynomials Fk and Gk. On choosing k appro-
priately, Hata got a good control of the denominator of the rational part
an of the integral (2.4) through the p-adic valuation of the above ~1~"~ and
of the binomial coefficients occurring as coefficients of Fk and Gk. Thus
Hata proved the irrationality measure p(((2) )  6.3489. In his addendum
to the paper [H2], he subsequently applied to the integral (2.4) a change of
variables introduced in [RV1] showing that (2.4) equals

By combining (2.4) and (2.5), Hata proved that it(((2))  5.687.

~ 

3. Permutation groups for double integrals
The equality of the integrals (2.4) and (2.5) is a special instance of a

far more general phenomenon discovered by Rhin and Viola, and described
in [RV2] for double integrals, and in [RV3] for triple integrals of Beukers’
type. This phenomenon depends upon the actions of suitable birational
transformations on the double or triple integrals considered.



566

In this section we outline the main results of [RV2]. Let

where h, z, j, are any non-negative integers (this condition clearly
ensures that z, j, k, t ) is finite). Let T : (x, y) H (X, Y) be the birational
transformation defined by the equations 

-

It is easily seen that T has period 5 and maps the open unit square (o,1 ) 2
onto itself. Moreover, we have

and

so that both the rational function (3.3) and the measure (3.4) are invariant
under the action of T.

If we apply the birational transformation T to I(h, i, j, k, l), i.e., if we
make in the integral (3.1) the change of variables

and then replace X, Y with x, y respectively, by virtue of (3.4) we obtain
the integral Thus, it is natural to associate with the action
of T on i, j, k, l ) the cyclic permutation

Also, if we apply to the transformation

i.e., if we interchange the variables x, y in (3.1), we get the integral
I(k, j, i, h, l). Hence with the action of Q2 on we associate
the permutation 

°

~2 = (h k)(i 7)~
We use the subscript 2 for Q2 and u2, and later on for p2, and ~2 (see
(3.19) below), to indicate that such transformations and permutations are
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related with double integrals. In Section 4, the analogues for triple integrals
will be denoted by a similar notation with the subscript 3.
The permutation group

generated by T and a2 is clearly isomorphic to the dihedral group T5 of
order 10, and the value of I(h, i, j, k, l ) is invariant under the action of the

group T on t~, i, j, k, l. Note that -

is the integral (2.4), and

is (2.5), so that the equality of (2.4) and (2.5) is a special case of the formula

obtained by applying to h, i, j, k, I the permutation -ra2 E T (here and in
the sequel, a product of permutations is meant to be the permutation
obtained by applying first ~C3 and then a).

Besides the integers

we consider the five auxiliary integers

the last of which is the exponent of the factor 1- xy in the rational function
appearing in the integral (3.1). Also, it is natural to extend the actions of
the above permutations T and u2 on any linear combination of h, i, j, k, 1
by linearity. Thus r(j+k-h) = -r (j) + -r (k) -,r (h) = k + I - i, etc. Hence
T and U2 act on the ten integers (3.5) and (3.6) as follows:

and

Let do = 1 and, as above, dn = l.c. m. ~ 1, ... , n~ for any integer n &#x3E; 1.

We also need some further notation: we denote by max, mar, mad’, ...
the successive maxima in a finite sequence of real numbers. Precisely, if
A _ (ai,..., an) is any finite sequence of real numbers ( with n &#x3E; 3) and .
i 1, ... , zn is a reordering of 1, ... , n such that

we let
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For the integral (3.1), let S be the sequence of the integers (3.6):

and let

We incidentally remark that our assumption h, i, j, &#x3E; 0 easily implies
that at most two of the integers (3.6) can be strictly negative (in which case,
the two negative integers must be cyclically consecutive in (3.6)). Therefore

0. One can show that

where M and N are defined by (3.10). In [RV2], Theorem 2.2, this result is
established in a slightly stronger form, i.e., with a more precise definition
for N. In fact, depending on the numerical values for h, i, j, k, l, the N
defined in [RV2] can be either max’s, or max"s  max’S. However, the
definition (3.10) for N turns out to be appropriate in practice, since the
N defined in [RV2] equals max’s for all the "good" numerical choices of
h, i, j, (i.e., those eventually yielding good irrationality measures of
~ (2) ) . The proof of (3.11) given in [RV2] is independent of a representation
of type (2.2) for the integral (3.1), and relies on the invariance of the value
of under the actions of the permutations T and 0"2, and on a
method of descent based on suitable linear decompositions of the rational
function appearing in (3.1). Moreover, the same method of descent shows
that the integer b in (3.11) can be expressed as a double contour integral,
in the form

It is worth remarking that if i -I- j - l &#x3E; minlh, i, j, kl, the integral (3.1)
cannot be transformed by partial integration into an integral of type (2.2)
to which Hata’s method applies. Thus it is essential to dispense with the
partial integration method and with Legendre-type polynomials, and to
apply directly to (3.1) the method of descent alluded to above.

As is obvious from (3.7) and (3.8), the permutation group T = (T, 0*2)
is intransitive over the set of the ten integers (3.5) and (3.6). We will
now enlarge our permutation group, under the further assumption that the
integers (3.6) are all non-negative, by introducing a new permutation cp2
(defined below in (3.19)), which mixes up (3.5) with (3.6), so that the larger
permutation group ~2 = (CP2, r, ~2) thus obtained is transitive over the set
of (3.5) and (3.6). Moreover, the group ~2 has the advantage of bringing
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naturally into play the factorials of the integers (3.5) and (3.6), and the
p-adic valuation of such factorials yields strong arithmetic information on
the denominator of the a E Q in (3.11). The permutation CP2 is related to
Euler’s integral representation of Gauss’s hypergeometric function, and to
the invariance of this function under the interchange of the two parameters
appearing in the numerator of the hypergeometric series.
We recall that Gauss’s hypergeometric function is defined as follows:

where a, {3 and -t are complex parameters, y :A 0, -1, -2, ... , and y is a
complex variable satisfying Iyl  1. The Pochhammer symbols in (3.13)
are defined by

and similarly for (Q)n and (7)n. Euler’s integral representation, valid for
is

where 1’ denotes the Euler gamma-function, and gives the analytic contin-
uation of outside the unit disc ’y’  1. Since, by (3.13),

if Re -t &#x3E; maxfre a, and minire a, &#x3E; 0 we get from (3.14)
(3.15)

We henceforth assume the non-negative integers (3.5) to be such that
(3.6) are also non-negative. Then we may take in (3.15)

whence

Multiplying by yk(1 - y)j and integrating in 0  y  1 we obtain
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If we divide (3.16) by we get

Let p2 be the integral transformation changing

into

and let W2 be the corresponding permutation, mapping the integers (3.5)
respectively to i + j - I, I + h - j, j, k, 1, and extended to any linear
combination of the integers (3.5) by linearity. Thus CP2 is the permutation
acting on the ten integers (3.5) and (3.6) as follows:

By (3.17), the value of the quotient (3.18) is clearly invariant under the
action on the integers (3.5) and (3.6) of the permutation group

generated by and Cr2-
We want to determine the structure of the permutation group ~2 acting

on (3.5) and (3.6), and in particular its order For this purpose, we
show that ~2 can be viewed as a permutation group acting on five integers
only, i.e., on the sums

To prove this, it clearly suffices to show that and ~2 permute the
integers (3.20), and that if a permutation e E ~2 acts identically on the
integers (3.20), it acts identically also on the integers (3.5), and therefore
also on (3.6). It is plain that the actions of the above permutations on the
integers (3.20) are as follows:

Moreover, if e E ~2 acts identically on the integers (3.20) we get, by
linearity,
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and similarly

and so on. Hence e acts identically on the integers (3.5). Since the symmet-
ric group 65 of the 5! permutations of five elements (i.e., of the integers
(3.20)) is generated by a cyclic permutation of the five elements and a
transposition, from (3.21) we conclude that °

is isomorphic to 65. Therefore 1921 = 120.
We now consider again the actions (3.7), (3.8) and (3.19) of the above

permutations on the ten integers (3.5) and (3.6). If we apply to (3.18) any
permutation e E 4P2, we get the transformation formula

Thus we associate with Q the quotient

resulting from the transformation formula (3.23) for I(h, i, j, k, d). If e, e’ E
~2 lie in the same left coset of T in ~2, i.e., if e = e’e" with e" E T, the
integers e(h), e(i), e(j), e(k), Q(1) obviously coincide with e!(h), e,(i),
e’(j), e~(k), e’(1), up to a permutation. Hence the quotient (3.24) for
e equals the analogous quotient for e’. Thus with each left coset of T
in ~2 we may associate the corresponding quotient (3.24), where e is any
representative of the coset considered. Also, for any e E P2 we simplify the
quotient (3.24) by removing the factorials of the integers appearing both
in the numerator and in the denominator. If, after this simplification, the
resulting quotient of factorials has v factorials in the numerator and v in
the denominator, we say that e is a permutation of level v (or that the left
coset LoT is of level v). In other words, e is of level v if the intersection of the
set fLo(h), e(i), e(j), e(k), with the set of the integers (3.6) contains v
elements.

Since I’P21 = 120 and ITI = 10, there are 12 left cosets of T in ~2. In
[RV2], pp. 39-40, we show that the 12 left cosets can be classified as follows:
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Moreover, the 5 quotients of factorials associated with the 5 left cosets of
level 2 are all distinct, and similarly the 5 quotients of factorials associated
with the 5 left cosets of level 3 are all distinct.

For the rest of this section we define

where T is the sequence of the ten integers (3.5) and (3.6). Then, a fortiori,
(3.11) holds with M and N given by (3.25). Also, for any e E ~2, e(j) +
e(k) - e(h) = e( j + k - h) is one of the integers (3.5) or (3.6), and similarly
for e(k) + g(l) - e(i), etc. Hence we have, by (3.11),

where M and N are defined by (3.25), and where a. and bg depend only
on the left coset eT.

For fixed h, i, j, 1~, l , we now abbreviate

with a,, E Q and bn E Z. Pick any g E P2 of level 2: for instance, take
9 = C(J2. By (3.16), the transformation formula for In corresponding to the
permutation C(J2 is

where

with a. E ~ and V. E Z. By (3.27), (3.28) and (3.29), and by the irra-
tionality of ~(2), we obtain

On multiplying (3.30) by dMndrrn, with M and N given by (3.25), we get

where An - and are integers, by (3.11) and
(3.26).

For a prime p, let

denote the fractional part of Using the p-adic valuation of the factorials
appearing in (3.31), it is easy to see ([RV2], pp.44-45) that any prime
p &#x3E; for which
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divides An = 
The above discussion applies to each transformation formula for In cor-

responding to a left coset of T in ~2 of level 2. The 5 left cosets of level 2
yield the 5 inequalities for w obtained by applying the powers of the per-
mutation T to (i + j -1, l + h - j, h, i) in (3.32). Let S? be the set of real
numbers W E ~0,1 ) satisfying at least one of such 5 inequalities. We con-
clude that any prime p &#x3E; Mn, for which E f2, divides the integer
An = We incidentally remark that Y2 is clearly the union of
finitely many intervals with rational endpoints aq, ,Bq E (0,1).
A similar analysis applies to the 5 transformation formulae for In corre-

sponding to the left cosets of level 3, and yields a subset S2’ C S2 such that
p2 divides An = dMndNnan for any prime p &#x3E; Mn satisfying in/p} E S2’.
Finally, the transformation formula corresponding to the left coset of level
5 gives no further prime factors of An besides the above ([RV2], pp. 46-49) .

Let

From the above discussion we get An. Also, it is easy to show that
dn and Hence, if we define

we have Z and

Therefore, by (3.27),

and the asymptotic estimates for Dn, In and oo in (3.34) yield
an irrationality measure of ~(2), by applying the Proposition in Section 1.

Since dMndNn = exp((M+N)n+o(n)) by the Prime Number Theorem,
from (3.33) we get

Standard arguments (see, e.g., [Vi], pp. 463-464) show that
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where 1/J(x) = r’(x)/1’(x) is the logarithmic derivative of the Euler gamma-
function. Therefore

Note that if the integral In given by (3.27) is Beukers’ integral (1.3), i.e., if
h = i = j = k = l, the five inequalities of type (3.32) become 2(hw~  2(hw)
and therefore are false, whence S2 = 0. Thus

vanishes for the integral (1.3). A judicious choice of the parameters in
(3.27), i.e., one where h, i, j, are not all equal but their differences are
not too large, forces to lose a certain amount on the asymptotics for I~, and
Ibnl in comparison with the integral ( 1.3), but allows to gain much more on
the divisor Dn of dMndNn, by virtue of the arithmetical correction (3.36)
in the asymptotic formula (3.35).

Let
....

If we assume the integers (3.5) and (3.6) to be all strictly positive, it is easy
to see that the function f (x, y) has exactly two stationary points (xo, yo)
and (xl, yl) satisfying x(l - x)y(l - y) 0 0, with 0  xo, yo  1 and

xl,yl  0, xlyl &#x3E; 1. Plainly

and the double contour integral representation (3.12) for bn easily yields

If we denote

from (3.34), (3.35), (3.37), (3.38) and the Proposition in Section 1 we get
the irrationality measure

provided that co &#x3E; c2.
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The choice

whence

we obtain

4. Permutation groups for triple integrals
The theory outlined in Section 3 has its analogue for triple integrals of

Beukers’ type, and this has been worked out in [RV3]. In this section we
briefly summarize the results of [RV3]. Again we introduce a permutation
group arising on the one hand from the action on the triple integrals of
a three-dimensional birational transformation 3 (defined by (4.2) below),
analogous to the two-dimensional transformation T given by (3.2), and on
the other hand from the hypergeometric integral transformation given by
the relation (3.15). Thus, the hypergeometric part of our method for triple
integrals still relies on the formula (3.15) involving simple integrals, while
a process to derive the three-dimensional transformation 3 from the two-
dimensional transformation T is definitely less obvious, and is described in
Section 5. Moreover, as we have seen in Section 3, the rational function
appearing in the double integral contains 5 factors, the trans-
formation T has period 5, and the permutation group ~2 - (Sp2, T, is

isomorphic to the symmetric group 65 of permutations of 5 elements. The
situation for triple integrals that we treat in this section is more compli-
cated, since no number has the role played by 5 for double integrals. In

fact, the rational function in the triple integral (4.1) considered in this sec-
tion contains 7 factors, but, in order to ensure that the integral has the
required arithmetic expression, only 6 exponents of such factors are taken
to be independent, by virtue of the linear condition (4.6) below. Also, the
transformation 3 has period 8, and the permutation group arising from

. t9 and from the hypergeometric integral transformation can be naturally
embedded in the alternating group 2ll0 of the even permutations of 10
elements.

For integer parameters h, j, k, l , q, r, s, we consider the integral
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We assume h, j, k, l, q, r, s &#x3E; 0 and h  k + r, since these inequalities
are easily seen to be necessary and sufficient for the integral (4.1 ) to be
finite. Let {} : (x, y, z) ~ (X, Y, Z) be the birational transformation defined
by

It is easy to check that 3 has period 8 and maps the open unit cube (0,1)3
onto itself. Moreover, under the action of 3 we have

and

If we apply the transformation t9 to the above integral, i.e., if we make
in (4.1) the change of variables

and then replace X, Y, Z with x, y, z respectively, by (4.3) the integral
(4.1 ) becomes

Thus it is natural to define m = k + r - h, whence m &#x3E; 0 and

and to assume the linear condition

which eliminates from (4.4) the undesired extra factor 1 - (1 - x)z. Also,
by (4.6) we have r + 1 - q = r + j - s, so that the integral (4.4) can be
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written in the form

This integral is obtained from (4.1) by applying to the parameters the cyclic
permutation (h j k 1 r s). Therefore, if for any non-negative integers
h, j, k, I, m, q, r, s satisfying (4.5) and (4.6) we define

where m is a "hidden" parameter, we see that the transformation 3 given by
(4.2) changes the integral (4.7) into I ( j, k, l, m, q, r, s, h). Thus we associate
with the action of V on the cyclic permutation

If we apply to the integral (4.7) the transformation

i.e., if we interchange the variables x, y in (4.7), by (4.5) we get the integral
I(k, j, h, s, r, q, m, t ). Hence with the action of ~3 on I(h, j7 k, l, m, q, r, s) we
associate the permutation

The permutation group

generated by t9 and a3 is clearly isomorphic to the dihedral group T8 of
order 16, and the value of l(h,j,k,l,m,q,r,s) is invariant under the action
of e on h, j, k, 1, m, q, r, s.

In analogy with (3.5) and (3.6), besides the integers
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we consider the eight auxiliary integers

where the double expression for each of the integers (4.9) is obtained by
applying (4.5) or (4.6). Also, we extend the actions of the permutations t9
and er3 on any linear combination of the integers (4.8) by linearity, and we
can do this because

so that 0 and Q3 preserve the relations (4.5) and (4.6). In particular, 1?
and a3 act on the sixteen integers (4.8) and (4.9) as follows:

and

Let

be the sequence of the integers (4.9), and let

where we use again the notation (3.9). It is easy to see that M &#x3E; N &#x3E; (~ &#x3E;
0. In [RV3], Theorem 2.1, we prove that

As with (3.11), the proof of (4.11) is based on the invariance of the value of
the integral (4.7) under the actions and a3, and on a suitable method
of descent. We also have the analogue of (3.12), since the integer b in (4.11)
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is given by’

where C = {x E ~ : Ixl = y}, C. = ly E C : ly - llxl = ~2} and
C
The linear relations (4.5) and (4.6) are essential for the validity of (4.11), 7

since if j + q &#x3E; 1 + s, in general the integral (4.1) is a linear combination of
1, ’(2) and (3) with rational coefficients (see [RV3], Remark 2.2).
We now assume the non-negative integers (4.8) to be such that (4.9) are

also non-negative. If in the formula (3.15) we change y into -yz/(1 - x),
and take

we easily obtain

Multiplying by and integrating in 0  y  1, 0  z  1,
we get

Therefore

Let p3 be the integral transformation changing

into

and let tp3 be the corresponding permutation, mapping the integers (4.8)
respectively to q’, j, k, r~, m, r, q, s, and extended to any linear combination

lI take this opportunity to correct a misprint in [RV3] occurring in the proof of the above
integral representation (4.12) for b. On p.2?? of [RV3], in the line between the formulae (3.2)
and (3.3), the inequality UIU2U3 &#x3E; 1 should be replaced by (gi g2 - 1)g3 &#x3E; 1.
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of the integers (4.8) by linearity. In fact, in analogy with (4.10) we have

so that W3 also preserves (4.5) and (4.6). Hence W3 acts on (4.8) and (4.9)
as follows:

We can also apply the hypergeometric transformation with respect to z.
If in (3.15) we change x into z and into 1 - xy, and take

we have

Multiplying by xh(1 - and integrating, we get

whence

We denote by X this hypergeometric integral transformation, and by X the
corresponding permutation acting on (4.8) and (4.9). Again, x preserves
(4.5) and (4.6), since

Therefore

The value of the quotient (4.13) is clearly invariant under the action on the
integers (4.8) and (4.9) of the permutation group

generated by and 0’3-
The structure of ~3 can be analysed by an argument similar in principle

to the discussion on the structure of ~2 made in Section 3, although more
complicated. ~3 can be viewed as a permutation group acting on ten
integers, i.e., on the sums
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which, for brevity, we denote by ul , ... , ulo respectively. In fact, the actions
of CP3, X, t9 and a3 on such integers are the following:

I , , ,

and if a permutation g E ~3 acts identically on the set

we get, by linearity,

and similarly 2e(j) = e(2j) = O(U2) - e(u5) + g(U9) - e(u4) + g(U7) =
2i (where we use u9 = j + q = l + s), etc. Hence e acts identically
on the integers (4.8), and therefore also on (4.9). Since (4.14) are even
permutations of U, we have an embedding of the group ~3 in the alternating
group fllio of all the even permutations of U.
The group (fP3’ ~9) is clearly transitive over U, and hence so is ~3. More-

over, 43 is imprimitive over U, with blocks of imprimitivity given by the
elements of the partition

of the set U. In fact, the permutations x*, i9* and (73 of P defined by

are clearly induced by ~p3, and ~3 respectively, whence the mapping
Sp3 t-4 x H x*, ~ ~ t9*, extends to a homomorphism .3 ~
65 of the group ~3 into the symmetric group C~5 of all the permutations
of ~. Such a homomorphism is easily seen to be surjective. Hence, if we
denote its kernel by K, we have an exact sequence of multiplicative groups:

The structures of the two $anking groups in (4.15) yield information on
the structure of ~3, and in particular determine the order It is easy
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to show that K is isomorphic to the additive group (Z/2Z)4 (see [RV3],
p.283). Thus we have IKI = 24, 1651 = 5!, whence

Also, a further argument shows that

in analogy with (3.22).
The rest of this discussion is similar to the one in Section 3. With any

permutation g E ~3 we associate the quotient

and if lie in the same left coset of 8 in ~3, the quotient (4.16) for g
equals the analogous quotient for J. Also, we say that e is a permutation
of level v, or that the left coset ~00 is of level v, if, after simplifying (4.16),
we have v factorials in the numerator and in the denominator.

Since 1931 = 1920 16, there are 120 left cosets of 8 in ~3,
yielding 120 distinct quotients of factorials, which can be classified as fol-
lows (see [RV3], pp. 286-287) :

We now define

where

is the sequence of the integers (4.8) and (4.9). By (4.11) we have, for any
a

where ag and bl1 depend only on the left coset e4.
For fixed h, j, k, t , m, q, r, s, let
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with and bn E Z. From (4.11) we get dMndNndQnan E Z. As in
Section 3, each transformation formula for In corresponding to a left coset
of ein ~3 of level &#x3E; 0 yields information on the p-adic valuation of the
integer A.n = dMndNndQnan, thus allowing to eliminate divisors of A.n of the
types p, p’ or p3 for suitable primes g~. However, the resulting arithmetic
discussion clearly depends on the level of the left coset associated with the
transformation formula considered. In Section 5 of [RV3] we show that the
choice

satisfying h + m = k + r required, with M = k = 19,
N = q’ = 18, Q = j = 17, yields a suitable set of 15 (among the 30) left
cosets of level 4, such that the corresponding 15 transformation formulae
for In suff ce for the study of the p-adic valuation of An . Using such 15
transformation formulae, by a treatment similar to the one described in
Section 3 we define a divisor Dn of dMndNndQn such that Dnan E ?L and

By (4.17) we have

and the asymptotic estimates for Dn, In and Ibnl in (4.20) yield an ir-
rationality measure of ((3), again by applying the Proposition in Section
1.

Let 
. - - 

If the integers (4.8) and (4.9) are all strictly positive, has exactly
two stationary points and (xl, yl,zi) satisfying x(1 - x)y(l -

z) 0, with 0  xo, yo, zo  1 and xl, yl, Zl  0, yn &#x3E; 1
zj  (1- XIY1)-I. Then, in analogy with (3.37) and (3.38), for the integral
(4.17) we have

and

With the values (4.18) we get

and
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Thus, using (4.19), (4.21), (4.22), (4.23), (4.24) in (4.20), and applying the
Proposition in Section 1, we find that the choice (4.18) yields the irrational-
ity measure

5. Invariants

As we have seen in Section 4, the main new tool in our treatment of triple
integrals, in comparison with the theory for double integrals outlined in
Section 3, is represented by the three-dimensional birational transformation
3 defined by (4.2). In this section we give a constructive method to derive 3
from the two-dimensional birational transformation T defined by (3.2). Our
method employs suitable rational functions and measures invariant under
the action of a two-dimensional involution ? related with T.

Denote the permutation ra2 by T. First, we remark that T = Tcr2 -
(h k) is a product of transpositions, and hence has period 2. Ac-

cordingly, the corresponding birational transformation T = (12" : (x7 Y) ~
(X, Y) given by

is an involution, i.e., has also period 2. Since T = = TT2? for the
permutation group T we obviously have

Thus the involutions ? and o~2, together with the hypergeometric integral
transformation V2, suffice to obtain the results of Section 3.

Using an involution ’TJ (in any dimension) has the advantage that one can
easily construct several functions invariant under the action of q. For if the
transformation q : (xl , ... , zn) F4 (X 1, ... , Xn ) defined by the equations

is an involution, we have 1/-1 = 1/, whence



585

Therefore, if F(u, v) is any symmetric function of two variables and
G (t 1, ... , is any function of n variables, we get

and we conclude that

is invariant under the action of t7. For instance, taking F(u, v) = uv, n = 2
and G(tl, t2) = t2, from the second equation in (5.1) we see that the rational
function

is invariant under the action of the involution T.
We want to get three-dimensional birational transformations, acting on

the Beukers type integral (4.1), from the two-dimensional birational trans-
formations previously used for the integral (3.1). Therefore, it is nat-
ural to seek a rational function Z (x, y, z) such that the transformation
(x, y, z) e (X, Y, Z) obtained by associating the involution (5.1) with the
equation Z = Z(x, y, z):

maps the open unit cube (0,1)3 onto itself and satisfies

Thus we demand a solution Z(x, y, z) of the differential equation (5.3), with
X and Y given by (5.1), such that

’ 

Since X and Y are independent of z, the jacobian determinant factorizes:

Thus
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where we denote

the differential of Z(x, y, z) with respect to z only. Since the measure

dx dy/(I - xy) is invariant (up to the sign) under the action of (5.1), if we
multiply and divide by 1- XY the left side of (5.3) and by 1- xy the right
side, by virtue of (5.5) we get the differential equation

whence

with C = C(x, y) independent of z. Therefore

The condition (5.4) becomes

O

i.e.,

for 0  x, y, z  1. In particular, taking z = 0 and z = 1, we require

whence, choosing either sign for the exponent,

Since (5.1) is an involution, if we had (5.6) we should also have the same
inequality with (x, y) and (X, Y) interchanged, whence XY = xy. But
this is false, since the function ~y is not invariant under the action of T.
Hence the differential equation (5.3), with X and Y given by (5.1), has no
solutions satisfying (5.4).

However, since the jacobian determinant

is invariant (up to the sign) under the interchange of x with 1 - x, or of
X with 1- X, etc., or under any permutation of y, zl or of ZI,
we can apply the method described above to solve the differential equation
obtained by twisting (5.3) with any of the above mentioned interchanges or
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permutations. For instance, we may demand a solution Z(x, y, z) satisfying
(5.4) of the twisted differential equation

again with X and Y given by (5.1). Since (5.2) is invariant under the action
of (5.1), the measure

is also invariant (up to the sign). Hence (5.7) can be written in the form

whence

with C = C(x, y). Therefore

From (5.4) we obtain

O

i.e.,

for 0  x, y, z  1. Taking z = 0 and z = 1 we require

These inequalities yield
1 1

if we choose the exponent -I-1, or

if we choose the exponent -1. In either case we get

By (5.2), the function
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is also invariant under the action of (5.1). Thus

and the conditions (5.9) or (5.10) yield

or

respectively. By (5.8) and (5.11) or (5.12), the differential problem (5.1)-
(5.4)-(5.7) has the solution

if we choose the - sign in (5.7), i.e. the exponent +1 in (5.8), or the
solution

if we choose the + sign in (5.7). If in the transformations (x, y, z) H
(X, Y, Z) obtained by associating (5.1) with (5.13) or with (5.14) we inter-
change x with 1 - x, X with 1 - X, y with z, and Y with Z, we get the
involutions (x, y, z) ~ (X, Y, Z) given by

or by

which map (0,1)3 onto itself and, by virtue of (5.7), satisfy

or
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respectively, as required. Denoting the involution (5.15) by ~9, the trans-
formation 3 given by (4.2) is obtained as 3 = ia3, i.e., by interchanging x
and y in (5.15).
We remark that the success of the twist method described above relies

on the invariance of dxdy/(1 - xy) (up to the sign), (1 - x)y/(1 - xy)
and (1 - y)/(1 - xy) under the action of the involution ? defined by (5.1).

6. Yasilyev’s integral
If we interchange x with 1-x in (1.3) and (1.4), we get the denominators

1 - (1 - x)y and 1 - (1 - (1 - x)y)z. Therefore, the integral

where the polynomial Qk(xl, ... , Xk) is recursively defined by

is a natural generalization of Beukers’ integrals (1.3) and (1.4).
The above integral In(k) was studied by Vasilyev [Va], who proved that

and

with An, Bn, Cn, A~,, B~, Cn E Z, and that the linear forms (6.1) and (6.2)
tend exponentially to zero oo. Moreover, Vasilyev conjectured that,
for any h &#x3E; 2,

with E Z ( j = 0,1, ... , 7 h).
In this section we apply again our twist method, introduced in Section

5, to obtain four-dimensional birational transformations which can be used
to investigate the arithmetical properties of a suitable generalization of the
integral In (4), where the exponents of the factors 1- zi , ... , ~4, 1- x4,

04(~1,~2,~3,~4) are not all equal.
By analogy with (1.3) and (1.4), we write the integral In(4) in the form
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Accordingly, we seek birational transformations (x, y, z, t) H (X, Y, Z, T)
mapping the open unit hypercube (0,1)~ onto itself and satisfying

We start from the involution Q3~92 : (x, y, z) H (X, Y, Z) given by the
equations

which maps (0,1)3 onto itself and preserves (up to the sign) the measure

Also, it is easily seen that under the action of (6.3) we have the invariants

and

We seek a solution z, t) of the twisted differential equation

with X, Y and Z given by (6.3), such that

By (6.4), the measure

is invariant (up to the sign) under the action of (6.3). Thus, following the
method of Section 5, (6.6) can be written as

where
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Therefore .

with C = C(x, y, z). From (6.7) we get

o

i.e.,

for 0  x, y, z, t  1. Taking t = 0 and t = 1 we require

Choosing either sign for the exponent, we easily obtain the condition

By (6.5), this rational function is invariant under the action of (6.3). Hence
by the method of Section 5 we get C = x/(1 - (1 - xy)z) and

if we choose the exponent +1, or C = x(1 - (1 - y)z) and

if we choose the exponent -1. If in the transformations (x, y, z, t) H
(X, Y, Z, T) obtained by associating (6.3) with (6.8) or with (6.9) we inter-
change x with 1- x, X with 1- X, and apply the permutations ( y z t) and
(Y Z T), by virtue of (6.6) we conclude that the involutions (~, y, z, t) H
(X, Y, Z, T ) given by
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or by

map (0,1)4 onto itself and satisfy

or

respectively.
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