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Integral identities and constructions
of approximations to zeta-values

par YURI V. NESTERENKO

RÉSUMÉ. Nous présentons une construction générale de combi-
naisons linéaires à coefficients rationnels en les valeurs de la fonc-
tion zêta de Riemann aux entiers. Ces formes linéaires sont ex-

primées en termes d’intégrales complexes, dites de Barnes, ce qui
permet de les estimer. Nous montrons quelques identités reliant
ces intégrales à des intgrales multiples sur le cube unité réel.

ABSTRACT. Some general construction of linear forms with ra-
tional coefficients in values of Riemann zeta-function at integer
points is presented. These linear forms are expressed in terms of
complex integrals of Barnes type that allows to estimate them.
Some identity connecting these integrals and multiple integrals on
the real unit cube is proved.

1. Introduction

Apery’s proof of irrationality of ((3) uses an elementary and rather com-
plicated construction of rational approximations un/vn E Q to this number
based on a recurrence relation. In [1] the following integral interpretation
of these sequences un, vn was proposed

Another presentation for the same sequences can be found in [4]

Here r(s) is Euler gamma-function and the contour C is the vertical straight
line that begins at -1/2 - ioo and ends at -1/2 + ioo.

In particular the aim of this article is to prove the coincidence of the
integrals ( 1 ) and (2). Besides we prove a more general integral identity

Manuscrit recu le 5 juin 2002.
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(Theorem 2) connected to the construction of functional linear forms in
polylogarithmic functions

In this way since we have the equality Lk(1) _ «(k) one can construct small
linear forms in zeta-values at integer points, which are more general than
right-hand sides of (1) and (2).

2. General construction of linear forms in

polylogarithms.
Let 1, b~ &#x3E; 1, j = 1,..., m, be integers. Define

where q is a rational number that will be defined later.
Denote

and

Then

The last equality defines the constant -y = b) &#x3E; 0.
In what follows an important role belongs to the function

The parameter (5)

is useful for a description of the convergence domain of (5). We will assume
that 8 &#x3E; 1. 2, then the series (5) converges in the circle lzl  1. In
the case 6 = 1, this series diverges at the point z = 1.

In the sequel the notation Aj will be used for special segments of the
real line. Define

and
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For the length of Aj we will use notation 
For any integer i define

and denote

The rational function R(s) can be presented as a sum of simple fractions

where P is the union of sets E S2. Note that the equality d(1) = 0 is
possible. For coefficients we have the expression

where d = d( i). Farther denote q = maXtEp d(e).
Due to (7) one can find the following equalities

This confirms that the sum (5) is a linear form in 1 and polylogarithms
with polynomial in 1/z coefficients. It is clear that analogous result can
be proved if we put as coefficients of the series any derivative of R(s) and
shift the lower limit of summation on any admissible integer number. The
following Proposition defines our general construction.

Proposition 1. Let a, p be integers satisfying inequalities a  aj, j E S2,
and p &#x3E; 1. Then for any z from the convergence domain of the series

the following identity holds

Here
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Proof. By (7) one can find

and

This proves Proposition 1.

Note that in the case 6 &#x3E; 2 we have A1 (1) = 0, since

Another reason for this equality is the divergence of L1 (z) and the converge-
nce of Lk (z), k &#x3E; 2, at the point z = 1.

Consider some more interesting partial choices of parameters ai, b~. The
following Proposition describes a construction of simultaneous Pade ap-
proximations for polylogarithms at neighbourhood of infinity.

Proposition 2. Let r be integers, 1  r  m, and parameters aj, bj 
following conditions

For any ~, 1  ~  r, define a function by the equality

These fqcnctions have the representation

where
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In particular

and

Note that polynomials do not depend on the index 0. In the
case r = 1 and J = 1 the above construction gives the Pade approximation
of the first kind and for r = m - 1 and J = 1 it gives the approximations
of the second kind.

Proof. In the conditions we have

This is a reason why the equalities (13)-(15) follow from (10) and (11).
The inequalities (16) follow from (14). 

-1)(v) = 0
- 

The inequalities (17) are valid, since due to (12) we have = 0

Proposition 3. Assume that the parameters aj, bj satisfy the conditions

for some c. Then for polynomials Ak(x), defined in Proposition 1 the fol-
lowing equalities hold

The condition (18) in this context was proposed by K. Ball and used in
first by T. Rivoal [6].

Proof. Since all parameters are integers and due to identity =

7r , we find

Therefore the function R(s) has the property

The representation (7) implies
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Since (18) we derive that for I E P the inclusion c - I E P and equality
d(c - 1) = d(l) hold. Moreover when I runs through the set P, also the
number c - I runs through this set. Hence (19) implies that

Compared together the last equality and (7), we find 
’

Hence

Then and this proves Proposition 3. 0

In particular the last Proposition implies that in case under consideration
with 8 &#x3E; 2 and even It+ 6 the number G(1) is a linear combination of 1 and
values of Riemann zeta-function at odd points with rational coefficients.
But for odd it + 6 the number G(1) is a polynomial in ’1f2 with rational
coefficients.

3. Integral representations.
For applications of above construction of linear forms one need upper

bounds for the absolute value of these forms. Here we will find analytic
representations for functions see (9), which allow in some cases to
find estimates and even asymptotics for their values.

3.1. Hypergeometric functions. The generalized hypergeometric func-
tion with parameters al, ... , a"a, b2, ... , bum E ~ is given by the series

where the symbol (a)o = 1, (a)" = a(a + 1) ... (a + v - 1), v &#x3E; 1. Here
one assumes that ai, b~ are distinct from negative integers. The series (20)
absolutely converges for any Izl  1 and for izl = 1 if an additional condition

is satisfied, see (3~.
In this subsection we consider a partial case of the construction (9),

corresponding to the choice = 1, a = al.
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Lemma 1. Let bl = 1 al .... a"1, b2,...,bm be positive integers with
a = al :5 aj, j E S2, and R(s), Gl (z) be functions defined by (3) and (9).
Then the following identity holds

Proof. Since R(x) = 0, 1 - x  -1, we derive 
"

Due to r(v+a) = r(a). 0, the above equalities prove the identity.
0

In particular for

Lemma 1 implies

The generalized hypergeometric function has several integral represen-
tations, see [3], [7], and in this way it has analytic continuation in the whole
complex plain with some cuttings. Although some of the formulae in this
subsection are classical, we have included their proofs for the convenience
of the reader. In two following lemmas we assume that the parameters
aj, bj are complex numbers.
The first one is a multidimentional generalization of Euler representation

for Gaussian hypergeometric function.

Lemma 2. Let bl - 1 and b2, ..., b,.,,,, be complex numbers
satisfying

. 

The integral J1 (z) is defined by

In these conditions the following assertions hold.
l. The integral Jl (z) absolutely converges for any z E C, arg(1 - z) I 

x,.
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2. For any z, lzl  1, we have

3. If 5 &#x3E; 1, see (21), we have (23) for any complex z, lzl  1.

Proof. 1. The first assertion is trivial, since in the conditions the function
1 - zx2 ~ ~ ~ x"1 is distinct from 0 on the cube [0; 

2. To prove the second one, see [7], subsection 4.1, we apply the identity

to the function (1 - ~2’’’ Since I z  1, the corresponding series
uniformelly converges on the cube [0; Hence

and this proves the identity.
3. Primarily let us prove for any real a, 0  a  rrz - 1, the following

identity

where both the series and the integral converge.
Convergence of the series is the consequence of 2(m -1) - (m - 1) - a =

m - a - 1 &#x3E; 0, see (7~, subsection 2.2.
Let us prove that the integral in (24) converges. Let .~ be real number

such that 0  À  1. Then we derive

The first equality is obtained by the transformation of variables ~Z = Àt2,
xj = t~, j &#x3E; 3, and the second one is a consequence of (23).
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Since the convergence of the series (24) one can compute the limit for
a -3 1. This proves that the integral in (24) converges and the equality
(24) itself.

Since 1 - xj  1 - x2 ~ ~ ~ x", on the cube [0,1]~"~, we obtain

This proves the convergence of the integral Jl(1).
For any z, lzl  1, we have 11 - zx2 ~ ~ ~ 1- ~2 ~ - ~ Xm. Therefore the

integral Jl(z) uniformely converges on the set lzl  1, and is continuous
function on this set. The sum of (20) is continuous function too. Hence
the equality (23) is valid for every z with lzl  1. 0

Lemma 2 demonstrates that the function from Lemma 1 can be

expressed by Euler’s multiple integral only in the case when the set Si
consists of one element. Following representation of generalized hypergeo-
metric function as a Mellin-Barnes type integral is valid in less restrictive
conditions on parameters, see [3], subsection 5.3.1.

Lemma 3. Let bl = 1 and al, ... , a;",, b2, ... , bm be complex numbers,
a~ ~ 0, -1, -2, ... , and let the integral I(z) be defined by the equality

there the path of integration L is coming from -ioo to ioo and separates
the poles of r(s + 1  j  m from the poles of r(-s). Besides

Under these conditions the following assertions hold.
1. For any.z E C such that I  7r, z 0 0, the integral I(z)

absolutely converges.
2. Suppose z is a positive real number arg(-z) = ±7r and 6 &#x3E; 1, see

(21); then the integrnl I(z) converges absolutely.
3. For any z, ~ arg(-z)) I  7r such that both the integral I(z) and the

series (20) converge the following equality holds

Proof. By ~Y(~) denote the function under the integral (25). Then we obtain
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Due to

and

see [81, we find

where ci here and later are positive constants depending only on z,.aj, bj
and the path L. Since

then

This inequality implies the absolute convergence of the integral from (32)
for 1 arg( -z)1  ~ and for 1 arg( -z)1 = x, if we additionaly postulate J &#x3E; 1.

To prove the last assertion we suppose Izl  1 and 1 arg( -z)1  7r. Due
to uniqueness theorem the identity will be true for other points of converge
at lzl  1.

Denote T = N+1/2, where N is sufficiently large integer number. Since
the inequality (28) is satisfied on the contour C composed of segments
connecting the points iT, T + iT, T - iT, -iT, the integral fc BII (s )ds tends
to zero when N - +00. Then the integral 1(z) can be evaluated as the
sum of the residues of ~(~) at points ( = 0,1, 2, ... taken with the sign
minus

Since r(a -E- n) = r(a) . (a)n the last identity proves the assertion. 0

Corollary 1. Let bl = 1 and al, ... , b2, ..., bm be complex numbers
satisfying
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Then for any z E C under condition I arg(-z) I  1r the following identity
holds .

where the path of integration L is the same as in Lemma 3.
Suppose that J &#x3E; 1 and z is a real number 0  z  1, arg(-z) = :l:1r;

then the above identity is satisfied.

Proof. For Izi  1 the identity is a consequence of Lemmas 2 and 3. For
remaining z it is valid due to uniqueness of the analytic continuation. 0

3.2. Hypergeometric integrals. Here we will find integral representa-
tions for sums defined in Proposition 1. These representations are
useful in applications for computation of asimptotics for constructed linear
forms.

Let r &#x3E; 2 be integer and be complex number. Denote

where L is a path in complex plane the same as in Lemma 3. It is easy
to check with the inequalities like (28), that the integral (29) converges for
l3lul  r. The following assertion express the function in terms of

integrals (29) and is analogous in this respect to Lemma 3.

Theorem 1. In conditions of Proposition 1 there exist constants de-

pending only on r, such that for any z = e1riu, l3lul  2, the following
inequalities hold

All the integralls are evaluated on stright line Rs = 1/2-a comming bottom-
up.

Relations of this kind were used at first by L. A. Gutnik, [2] in opposite
direction, and T. Hessami-Pilerhood, [5].
The proof of following Lemma gives the way to compute all coefficients.
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Lemma 4. For any integer r &#x3E; 2 there exist rational numbers da such that
the following asymptotic equality holds

Proof. We prove this assertion by induction on r. For r = 2 it is true with
do = 1. Assume that this assertion is true for some r &#x3E; 1.

Differentiate (30) and apply formulas

we derive

Last equality proves the assertion needed. 0

Another proof of Lemma 4 one can find in [9, Lemma 2.2.].

Proof of Theorem 1. With the coefficients da introduced in Lemma 4 we
find

where

Lemma 4 implies that the function U(s) has 1 as period, besides in a
neighbourhood af every integer point v the assymptotic equality holds
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The integral in right-hand side of (31) equals to the sum of the residues at
integer points v &#x3E; 1/2 - a. Therefore

The last equality implies
.._1 i

This allows to enforce the inductive argument on r. 0

The following Theorem connects multiple integrals of special kind and
complex integrals (29).
Theorem 2. Let m, r, 1  r  m, be zntegers, c be negate real number
and al, ... am b2, ..., complex numbers satisfying

Then for any complex number z, ~ arg zi  ~ the following identity holds

where both integrals converge. Here

and the path of integration L is the stright line RC = c, coming from -ioo
to ioo.

Proof. Obviously, the integral on the left-hand side of (32) converges.
Let us prove the absolute convergence of the integral in right-hand side

for largzl  7rr.

Denote the function under the right integral of (32) as ~(~). Then we
have 

- - - _
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where

Using (26), (27) we obtain

Since on the path of integration

we get

This inequality implies absolute convergence of the integral in right-hand
side of (32) for I arg zi  rx.

According to Lemma 2 the left-hand side of (32) can be expressed in the
form

Apply to the inner integral of the right-hand side of (34) Corollary 1
with the path L given in conditions of the Proposition. Then we derive

and
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Now one can change the order of integration and to make the external
integration on (:

On the path L the following equalities hold

Therefore

and we obtain (32).
For any (6L we have

This implies that the integral converges and does not depend on the variable
(. In addition the integral

absolutely converges due to Lemma 3. This grounds the possibility to
change the order of integration in (35). 0

Note that for integer parameters aj,bj the integral in right-hand side
of (32) owing to the relation x) = 4 can be written in the
form (29). And conversely the integral (29) can be expressed as multiple
integral. Namely the integral for z = e1riu concides up to the sign
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with

in the case of convergence.
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