Nous étudions les propriétés métriques de l'approximation diophantienne simultanée dans le cas non archimédien. Nous prouvons d'abord une loi du 0 - 1 de type Gallagher, que nous utilisons ensuite pour obtenir un résultat de type Duffin-Schaeffer.
We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.
@article{JTNB_2003__15_1_151_0, author = {Inoue, Kae}, title = {The metric simultaneous diophantine approximations over formal power series}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {151--161}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, mrnumber = {2019008}, zbl = {1045.11052}, language = {en}, url = {http://www.numdam.org/item/JTNB_2003__15_1_151_0/} }
TY - JOUR AU - Inoue, Kae TI - The metric simultaneous diophantine approximations over formal power series JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 151 EP - 161 VL - 15 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2003__15_1_151_0/ LA - en ID - JTNB_2003__15_1_151_0 ER -
Inoue, Kae. The metric simultaneous diophantine approximations over formal power series. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 151-161. http://www.numdam.org/item/JTNB_2003__15_1_151_0/
[1] Khintchine's problem in metric diophantine approximation. Duke Math. J. 8 (1941), 243-255. | JFM | MR | Zbl
, ,[2] Additive Number Theory of Polynomials Over a Finite Field. Oxford University Press, New York, 1991. | MR | Zbl
, ,[3] Approximation by reduced fractions. J. Math. Soc. Japan 13 (1961), 342-345. | MR | Zbl
,[4] On metric Diophantine approximation in positive characteristic, preprint. | MR | Zbl
, ,[5] Basic Ergodic Theory. Birkäuser Verlag, Basel-Boston- Berlin, 1991. | MR
,[6] The k-dimensional Duffin and Shaeffer conjecture. Sém. Théor. Nombres Bordeaux 1 (1989), 81-87. | EuDML | Numdam | MR | Zbl
, ,[7] Number Theory in Function Fields. Springer-Verlag, New York-Berlin-Heidelberg, 2001. | MR | Zbl
,[8] Metric Theory of Diophantine Approximations. John Wiley & Sons, New York -Toronto-London- Sydney, 1979. | MR | Zbl
,