Soit une famille de formes quadratiques à deux variables de même discriminant, un ensemble de progressions arithmétiques et m un entier strictement positif. Nous nous intéressons au problème de la représentation des puissances de nombres premiers appartenant à une progression de par une forme quadratique de .
Let be a set of binary quadratic forms of the same discriminant, a set of arithmetical progressions and a positive integer. We investigate the representability of prime powers lying in some progression from by some form from .
@article{JTNB_2003__15_1_141_0, author = {Halter-Koch, Franz}, title = {Representation of prime powers in arithmetical progressions by binary quadratic forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {141--149}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, mrnumber = {2019007}, zbl = {1048.11030}, language = {en}, url = {http://www.numdam.org/item/JTNB_2003__15_1_141_0/} }
TY - JOUR AU - Halter-Koch, Franz TI - Representation of prime powers in arithmetical progressions by binary quadratic forms JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 141 EP - 149 VL - 15 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2003__15_1_141_0/ LA - en ID - JTNB_2003__15_1_141_0 ER -
%0 Journal Article %A Halter-Koch, Franz %T Representation of prime powers in arithmetical progressions by binary quadratic forms %J Journal de théorie des nombres de Bordeaux %D 2003 %P 141-149 %V 15 %N 1 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_2003__15_1_141_0/ %G en %F JTNB_2003__15_1_141_0
Halter-Koch, Franz. Representation of prime powers in arithmetical progressions by binary quadratic forms. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 141-149. http://www.numdam.org/item/JTNB_2003__15_1_141_0/
[1] A Classical Invitation to Algebraic Numbers and Class Fields. Springer, 1978. | MR
,[2] Primes of the form x2 + ny2. J. Wiley, 1989. | MR | Zbl
,[3] Representation of primes by binary quadratic forms of discriminant -256q and -128q. Glasgow Math. J. 35 (1993), 261-268. | MR | Zbl
,[4] A Theorem of Ramanujan Concerning Binary Quadratic Forms. J. Number Theory 44 (1993), 209-213. | MR | Zbl
,[5] Geschlechtertheorie der Ringklassenkörpers. J. Reine Angew. Math. 250 (1971), 107-108. | MR | Zbl
,[6] Number Theory. Springer, 1980. | MR | Zbl
,[7] Representation of Primes in Arithmetic Progressions by Binary Quadratic Forms. J. Number Theory 45 (1993), 61-67. | MR | Zbl
, ,[8] Remarque sur la distribution des nombres premiers. C. R. Acad. Sci. Paris Sér. A 265 (1967), 405-407. | MR | Zbl
,[9] Über einen Satz von Dirichlet. J. Reine Angew. Math. 103 (1888), 98-117. | JFM
,