On a class of ψ-convolutions characterized by the identical equation
Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 561-583.

Dans le cadre de la convolution de Dirichlet des fonctions arithmétiques, R. Vaidyanathaswamy a obtenu en 1931 une formule de calcul de f(mn) valable pour toute fonction multiplicative f et tout couple d’entiers positifs m et n. Dans [7], cette formule a été généralisée aux ψ-convolutions appelées convolutions de Lehmer-Narkiewicz, qui, entre autres, conservent la multiplicativité. Dans cet article, nous démontrons la réciproque.

The identical equation for multiplicative functions established by R. Vaidyanathaswamy in the case of Dirichlet convolution in 1931 has been generalized to multiplicativity preserving ψ-convolutions satisfying certain conditions (cf. [7]) which can be called as Lehmer-Narkiewicz convolutions for some reasons. In this paper we prove the converse.

@article{JTNB_2002__14_2_561_0,
     author = {Nicolas, Jean-Louis and Sitaramaiah, Varanasi},
     title = {On a class of $\psi $-convolutions characterized by the identical equation},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {561--583},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     mrnumber = {2040694},
     zbl = {1071.11007},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2002__14_2_561_0/}
}
TY  - JOUR
AU  - Nicolas, Jean-Louis
AU  - Sitaramaiah, Varanasi
TI  - On a class of $\psi $-convolutions characterized by the identical equation
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
SP  - 561
EP  - 583
VL  - 14
IS  - 2
PB  - Université Bordeaux I
UR  - http://www.numdam.org/item/JTNB_2002__14_2_561_0/
LA  - en
ID  - JTNB_2002__14_2_561_0
ER  - 
%0 Journal Article
%A Nicolas, Jean-Louis
%A Sitaramaiah, Varanasi
%T On a class of $\psi $-convolutions characterized by the identical equation
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 561-583
%V 14
%N 2
%I Université Bordeaux I
%U http://www.numdam.org/item/JTNB_2002__14_2_561_0/
%G en
%F JTNB_2002__14_2_561_0
Nicolas, Jean-Louis; Sitaramaiah, Varanasi. On a class of $\psi $-convolutions characterized by the identical equation. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 561-583. http://www.numdam.org/item/JTNB_2002__14_2_561_0/

[1] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer. Math. Z. 74 (1960), 66-80. | EuDML | MR | Zbl

[2] D.H. Lehmer, Arithmetic of double series. Trans. Amer. Math. Soc. 33 (1931), 945-957. | JFM | MR | Zbl

[3] W. Narkiewicz, On a class of arithmetical convolutions. Colloq. Math. 10 (1963), 81-94. | EuDML | MR | Zbl

[4] V. Sitaramaiah, On the ψ-product of D. H. Lehmer. Indian J. Pure and Appl. Math. 16 (1985), 994-1008. | Zbl

[5] V. Sitaramaiah, On the existence of unity in Lehmer's ψ-product ring. Indian J. Pure and Appl. Math. 20 (1989), 1184-1190. | Zbl

[6] V. Sitaramaiah, M.V. Subbarao, On a class of ψ-products preserving multiplicativity. Indian J. Pure and Appl. Math. 22 (1991), 819-832. | Zbl

[7] V. Sitaramaiah, M.V. Subbarao, The identical equation in ψ-products. Proc. Amer. Math. Soc. 124 (1996), 361-369. | Zbl

[8] V. Sitaramaiah, M.V. Subbarao, On regular ψ-convolutions. J. Indian Math. Soc. 64 (1997), 131-150. | Zbl

[9] R. Vaidyanathaswamy, The identical equation of the multiplicative functions. Bull. Amer. Math. Soc. 36 (1930), 762-772. | JFM

[10] R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc. 33 (1931), 579-662. (=[11], 326-414.) | JFM | MR | Zbl

[11] R. Vaidyanathaswamy, The collected papers of Prof. R. Vaidyanathaswamy. Madras University, 1957. | MR