On montre que la méthode développée dans [HKN3] peut être appliquée pour l’étude des cycles polynomiaux dans certains anneaux, notamment les anneaux pour lesquels nous décrivons les cycles polynomiaux lorsque est impair ou le double d’un nombre premier.
It is shown that the methods established in [HKN3] can be effectively used to study polynomial cycles in certain rings. We shall consider the rings and shall describe polynomial cycles in the case when is either odd or twice a prime.
@article{JTNB_2002__14_2_529_0, author = {Narkiewicz, W{\l}adys{\l}aw}, title = {Polynomial cycles in certain rings of rationals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {529--552}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1071.11017}, language = {en}, url = {http://www.numdam.org/item/JTNB_2002__14_2_529_0/} }
TY - JOUR AU - Narkiewicz, Władysław TI - Polynomial cycles in certain rings of rationals JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 529 EP - 552 VL - 14 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2002__14_2_529_0/ LA - en ID - JTNB_2002__14_2_529_0 ER -
Narkiewicz, Władysław. Polynomial cycles in certain rings of rationals. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 529-552. http://www.numdam.org/item/JTNB_2002__14_2_529_0/
[A1] Diophantine equations related to finite groups. Comm. Algebra 4 (1976), 77-100. | MR | Zbl
,[A2] On the diophantine equation 1 + 2α = 3b5c + 2d3e5f. Math. Comp. 44 (1985), 267-278. | Zbl
,[AF1] On the diophantine equation 1 + pa =2b + 2cpd. Rocky Mount. J. Math. 15 (1985), 739-761. | MR | Zbl
, ,[AF2] On the diophantine equation 1 + x + y = z. Rocky Mount. J. Math. 22 (1992), 11-62. | MR | Zbl
, ,[Ba] User's Guide to PARI-GP, Bordeaux 1994.
, , , ,[Ca] On the equation ax - by = 1. Amer. J. Math. 75 (1953), 159-162. | MR | Zbl
,[Co] The Diophantine equation x2 + 3 = yn. Glasgow Math. J. 35 (1993), 203-206. | MR | Zbl
,[Da] Kant V4. J. Symbolic Comput. 24 (1997), 267-283. | MR | Zbl
, , , , , , ,[HKN1] Polynomial cycles in finitely generated domains. Monatsh. Math. 119 (1995), 275-279. | EuDML | MR | Zbl
, ,[HKN2] Polynomial cycles and dynamical units. Proc. Conf. Analytic and Elementary Number Theory, 70-80, Wien, 1996. | Zbl
, ,[HKN3] Scarcity of finite polynomial orbits. Publ. Math. Debrecen 56 (2000), 405-414. | MR | Zbl
, ,[Le] On a problem of Störmer. Illinois J. Math. 8 (1964), 57-79. | MR | Zbl
,[Len] Euclidean number fields of large degree. Invent. Math. 38 (1977), 237-254. | MR | Zbl
,[LN] On cliques of exceptional units and Lenstra's construction of Euclidean fields. Number Theory, Lecture Notes in Math. 1380, 150-178, Springer, 1989. | MR | Zbl
, ,[MDT] TIJDEMAN, Exponential diophantine equations with four terms. Indag. Math.(N.S.) 3 (1992), 47-57. | MR | Zbl
[Mo] Arithmetic properties of periodic points of quadratic maps, II. Acta Arith. 87 (1998), 89-102. | MR | Zbl
,[N1] Polynomial Mappings. Lecture Notes in Math. 1600, Springer, 1995. | MR | Zbl
,[NP] Finite polynomial orbits in finitely generated domains. Monatsh. Math. 124 (1997), 309-316. | MR | Zbl
, ,[Pe] Polynomial cycles in certain local domains. Acta Arith. 66 (1994), 11-22. | MR | Zbl
,[Pi] On the equation 2x - 3y = 2X + 3Y. Bull. Calcutta Math. Soc. 37 (1945), 15-20. | Zbl
,[Sch] S-units equations over number fields. Invent. Math. 102 (1990), 95-107. | MR | Zbl
,[Sc] On the equation px - by = c and ax + by = cz. J. Number Theory 44 (1993), 153-165. | MR | Zbl
,[Si] Sur une question concernant le nombre de diviseurs premiers d'un nombre naturel. Colloq. Math. 6 (1958), 209-210. | MR | Zbl
,[Sk] On the diophantine equation apx +bqy = c + dpz qw. J. Number Theory 35 (1990), 194-207. | MR | Zbl
,[St] Quelques théorèmes sur l'équation de Pell x2 - Dy2 = ±1 et leurs applications. Skr. Vidensk.-selsk. (Christiania) I, Mat. Naturv. Kl. (1897), no.2, 1-48.
,[TW] Sums of products of powers of given prime numbers. Pacific J. Math. 132 (1988), 177-193; corr. ibidem 135 (1988), 396-398. | MR | Zbl
, ,[Wa] A theorem on prime powers. Eureka 19 (1957), 10-11. | MR
,[Wg] Four terms equations. Indag. Math. 51 (1989), 355-361. | MR | Zbl
,