Linear independence of continued fractions
Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 489-495.

Nous donnons un critère d'indépendance linéaire sur le corps des rationnels qui s'applique à une famille donnée de nombres réels dont les développements en fractions continues satisfont certaines conditions.

The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

@article{JTNB_2002__14_2_489_0,
     author = {Han\v{c}l, Jaroslav},
     title = {Linear independence of continued fractions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {489--495},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     mrnumber = {2040689},
     zbl = {1067.11039},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2002__14_2_489_0/}
}
TY  - JOUR
AU  - Hančl, Jaroslav
TI  - Linear independence of continued fractions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
SP  - 489
EP  - 495
VL  - 14
IS  - 2
PB  - Université Bordeaux I
UR  - http://www.numdam.org/item/JTNB_2002__14_2_489_0/
LA  - en
ID  - JTNB_2002__14_2_489_0
ER  - 
%0 Journal Article
%A Hančl, Jaroslav
%T Linear independence of continued fractions
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 489-495
%V 14
%N 2
%I Université Bordeaux I
%U http://www.numdam.org/item/JTNB_2002__14_2_489_0/
%G en
%F JTNB_2002__14_2_489_0
Hančl, Jaroslav. Linear independence of continued fractions. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 489-495. http://www.numdam.org/item/JTNB_2002__14_2_489_0/

[1] P. Bundschuh, Transcendental continued fractions. J. Number Theory 18 (1984), 91-98. | MR | Zbl

[2] H. Davenport, K.F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. | MR | Zbl

[3] G.M. Fichtengolc, Lecture on Differential and lntegrational Calculus II (Russian). Fizmatgiz, 1963.

[4] J. Hancl, Linearly unrelated sequences. Pacific J. Math. 190 (1999), 299-310. | MR | Zbl

[5] J. Hancl, Continued fractional algebraic independence of sequences. Publ. Math. Debrecen 46 (1995), 27-31. | MR | Zbl

[6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford Univ. Press, 1985. | MR

[7] H.P. Schlickewei, A.J. Van Der Poorten, The growth conditions for recurrence sequences. Macquarie University Math. Rep. 82-0041, North Ryde, Australia, 1982.