On montre que la théorie de l'échantillonnage pour les signaux multi-canaux a une structure logique qui s'apparente à celle de l'analyse de Fourier.
Sampling theory for multi-band signals is shown to have a logical structure similar to that of Fourier analysis.
@article{JTNB_2002__14_2_425_0, author = {Dodson, Maurice M.}, title = {Shannon's sampling theorem, incongruent residue classes and {Plancherel's} theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {425--437}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, mrnumber = {2040686}, zbl = {02184592}, language = {en}, url = {http://www.numdam.org/item/JTNB_2002__14_2_425_0/} }
TY - JOUR AU - Dodson, Maurice M. TI - Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 425 EP - 437 VL - 14 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2002__14_2_425_0/ LA - en ID - JTNB_2002__14_2_425_0 ER -
%0 Journal Article %A Dodson, Maurice M. %T Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem %J Journal de théorie des nombres de Bordeaux %D 2002 %P 425-437 %V 14 %N 2 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_2002__14_2_425_0/ %G en %F JTNB_2002__14_2_425_0
Dodson, Maurice M. Shannon's sampling theorem, incongruent residue classes and Plancherel's theorem. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 425-437. http://www.numdam.org/item/JTNB_2002__14_2_425_0/
[1] Abstract harmonic analysis and the sampling theorem. In Sampling theory in Fourier and signal analysis:Advanced topics (eds. J. R. Higgins and R. L. Stens), Oxford University Press, 1999, 233-265.
, ,[2] Shannon's sampling theorem, Plancherrel's theorem and spectral translates, preprint, University of York, 2002.
, ,[3] Shannon's sampling theorem and abstract harmonic analysis, preprint, University of York, 2002.
, ,[4] Approximating Paley-Wiener functions by smoothed step functions. J. Approx. Theory 78 (1994), 433-445. | MR | Zbl
, , ,[5] Aliasing and Poisson summation in the sampling theory of Paley-Wiener spaces. J. Fourier Anal. Appl. 1 (1994), 67-85. | MR | Zbl
, ,[6] A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition 3 (1983), 185-212. | MR | Zbl
,[7] The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections. In The Heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math. 4 (1997), 143-160. | MR | Zbl
, ,[8] The sampling theorem and its unique role in various branches of mathematics. Mitt. Math. Ges. Hamburg 12 (1991), 523-527. | MR | Zbl
, , ,[9] Sampling theory of signal analysis. In: Development of mathematics 1950-2000, Birkhäuser, Basel, 2002, 193-234. | MR | Zbl
, , ,[10] An Introduction to Sampling Analysis. In: Nonuniform Sampling, Theory and Practice (ed. F. Marvasti), Kluwer Academic/Plenum Publishers, New York, 2000, Chapter 2, 17-121. | MR
, , ,[11] Fourier analysis and the sampling theorem, Proc. Royal Irish Acad. 85A (1985), 81-108. | MR | Zbl
, ,[12] A note on Whittaker's cardinal series in harmonic analysis. Proc. Edinb. Math. Soc. 29 (1986), 349-357. | MR | Zbl
, , ,[13] Information Theory. Dover, New York, 1968.
,[14] Five short stories about the cardinal series, Bull. Amer. Math. Soc. 12 (1985), 45-89. | MR | Zbl
,[15] Sampling theory in Fourier and signal analysis: Foundations. Clarendon Press, Oxford, 1996. | Zbl
,[16] The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2 (2000) 333-371. | MR | Zbl
, , ,[17] The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc. IEEE 65 (1977), 1565-1596. | Zbl
,[18] Sampling theorem in abstract harmonic analysis. Mat.-Fyz. Gasopis Sloven. Akad. Vied. 15 (1965), 43-48. | MR | Zbl
,[19] A simple result in quadrature. Nature 162 (1948), 215. | MR | Zbl
,[20] A sampling theorem for stationary (wide sense) stochastic processes. Trans. Amer. Math. Soc. 92 (1959), 1-12. | MR | Zbl
,[21] R. J. MARKS II (ed.), Advanced topics in Shannon sampling and interpolation theory. Springer-Verlag, New York, 1993. | MR | Zbl
[22] The summation formulae of Poisson, Plana, Euler-Maclaurin and their relationship. J. Math. Sci. 28 (1994), 151-171. | Zbl
, ,[23] A mathematical theory of communication. Bell System Tech. J. 27 (1948), 379-423, 623-656. | MR | Zbl
,[24] Communication in the presence of noise. Proc. IRE 37 (1949), 10-21. | MR
,[25] On the functions which are represented by the expansions of the interpolation theory. Proc. Roy. Soc. Edinburgh, 35 (1915), 181-194. | JFM
,