On note l’ensemble des nombres dont tous les quotients partiels (autres que le premier) sont inférieurs à . Dans cet article, nous nous intéressons aux produits et quotients d’ensembles du type .
For any positive integer let denote the set of numbers with all partial quotients (except possibly the first) not exceeding . In this paper we characterize most products and quotients of sets of the form .
@article{JTNB_2002__14_2_387_0, author = {Astels, Stephen}, title = {Products and quotients of numbers with small partial quotients}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {387--402}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, mrnumber = {2040683}, zbl = {1074.11034}, language = {en}, url = {http://www.numdam.org/item/JTNB_2002__14_2_387_0/} }
TY - JOUR AU - Astels, Stephen TI - Products and quotients of numbers with small partial quotients JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 387 EP - 402 VL - 14 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2002__14_2_387_0/ LA - en ID - JTNB_2002__14_2_387_0 ER -
Astels, Stephen. Products and quotients of numbers with small partial quotients. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 387-402. http://www.numdam.org/item/JTNB_2002__14_2_387_0/
[1] Cantor sets and numbers with restricted partial quotients (Ph.D. thesis). University of Waterloo, 1999. | MR | Zbl
,[2] Cantor sets and numbers with restricted partial quotients. Trans. Amer. Math. Soc. 352 (2000), 133-170. | MR | Zbl
,[3] Sums of numbers with small partial quotients. Proc. Amer. Math. Soc. 130 (2001), 637-642. | MR | Zbl
,[4] Sums of numbers with small partial quotients II. J. Number Theory 91 (2001), 187-205. | MR | Zbl
,[5] Teorija cisel (Number Theory). Kalininskii Gosudarstvennyi Universitet, Moscow, 1973. | MR | Zbl
,[6] JR, On the sum and product of continued fractions. Ann. of Math. 48 (1947), 966-993. | MR | Zbl
,[7] An Introduction to the Theory of Numbers (Fourth Edition). Clarendon Press, Oxford, UK, 1960. | MR | Zbl
, ,[8] Uber die Menge der Zahlen, die als Minima quadratischer Formen auftreten. J. Number Theory 9 (1977), 121-141. | MR | Zbl
,