Étant donné un réseau, nous construisons une équivalence entre des zones fermées du polytope de Voronoï correspondant, des sections hyperplanes convenables de la partition de Delaunay, et des formes quadratiques de rang qui sont des rayons extrêmes pour les domaines de type correspondants.
For a given lattice, we establish an equivalence between closed zones for the corresponding Voronoï polytope, suitable hyperplane sections of the corresponding Delaunay partition, and rank quadratic forms which are extreme rays for the corresponding -type domain.
@article{JTNB_2002__14_1_103_0, author = {Deza, Michel and Grishukhin, Viatcheslav}, title = {Rank $1$ forms, closed zones and laminae}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {103--112}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {1}, year = {2002}, mrnumber = {1925993}, zbl = {1069.11026}, language = {en}, url = {http://www.numdam.org/item/JTNB_2002__14_1_103_0/} }
TY - JOUR AU - Deza, Michel AU - Grishukhin, Viatcheslav TI - Rank $1$ forms, closed zones and laminae JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 103 EP - 112 VL - 14 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2002__14_1_103_0/ LA - en ID - JTNB_2002__14_1_103_0 ER -
Deza, Michel; Grishukhin, Viatcheslav. Rank $1$ forms, closed zones and laminae. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 103-112. http://www.numdam.org/item/JTNB_2002__14_1_103_0/
[1] Non-rigidity degree of a lattice and rigid lattices, European J. Combin. 22 (2001), 921-935. | MR | Zbl
, ,[2] Sur la partition régulière de l'espace à 4 dimensions. Izvestia AN SSSR ser. matem. 1 (1929), 79-110 et 2 (1929), 145-164. | JFM
(DELONE),[3] Investigations of parallelohedra in Rd. In: P.Engel, H.Syta eds., Voronoi's impact on modern science, Institute of Mathematics, Kyiv 1998, vol. 2, 22-60. | Zbl
,[4] On lattice dicing. European J. Combin. 15 (1994), 459-481. | MR | Zbl
, ,[5] C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of covering). Trudy of Steklov's Mathematical Institute, vol. 137 (1976), 3-131. (Translated as: Proceedings of Steklov Institute of Mathematics 1978, No 4.) | Zbl
, ,[6] Nouvelles applications des paramètres continus à la théorie des formes quadratiques - Deuxième mémoire. J. Reine Angew. Math. 134 (1908), 198-287 et 136 (1909), 67-178. | EuDML | JFM
,