Soit un corps quadratique réel. Nous donnons un algorithme rapide pour déterminer tous les corps quartiques diédraux avec signature mixte, monogènes (i.e. ayant des bases d’entiers ) et contenant comme sous-corps. Nous déterminons également tous les générateurs des bases dans ayant cette forme. Notre algorithme combine un résultat récent de Kable [9] avec l’algorithme de Gaál, de Pethö et de Pohst [6], [7]. On applique la méthode à
Let be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields with mixed signature having power integral bases and containing as a subfield. We also determine all generators of power integral bases in . Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for
@article{JTNB_2001__13_1_137_0, author = {Ga\'al, Istv\'an and Nyul, G\'abor}, title = {Computing all monogeneous mixed dihedral quartic extensions of a quadratic field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {137--142}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838076}, zbl = {1065.11086}, language = {en}, url = {http://www.numdam.org/item/JTNB_2001__13_1_137_0/} }
TY - JOUR AU - Gaál, István AU - Nyul, Gábor TI - Computing all monogeneous mixed dihedral quartic extensions of a quadratic field JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 137 EP - 142 VL - 13 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2001__13_1_137_0/ LA - en ID - JTNB_2001__13_1_137_0 ER -
%0 Journal Article %A Gaál, István %A Nyul, Gábor %T Computing all monogeneous mixed dihedral quartic extensions of a quadratic field %J Journal de théorie des nombres de Bordeaux %D 2001 %P 137-142 %V 13 %N 1 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_2001__13_1_137_0/ %G en %F JTNB_2001__13_1_137_0
Gaál, István; Nyul, Gábor. Computing all monogeneous mixed dihedral quartic extensions of a quadratic field. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 137-142. http://www.numdam.org/item/JTNB_2001__13_1_137_0/
[1] Solving Thue equations of high degree. J. Number Theory 60 (1996), 373-392. | MR | Zbl
, ,[2] KANT V4. J. Symbolic Comp. 24 (1997), 267-283. | MR | Zbl
, , , , , ,[3] On the resolution of index form equations in biquadratic number fields, I. J. Number Theory 38 (1991), 18-34. | MR | Zbl
, , ,[4] On the resolution of index form equations in biquadratic number fields, II. J. Number Theory 38 (1991), 35-51. | Zbl
, , ,[5] On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case. J. Number Theory 53 (1995), 100-114. | MR | Zbl
, , ,[6] On the resolution of index form equations in quartic number fields. J. Symbolic Computation 16 (1993), 563-584. | MR | Zbl
, , ,[7] Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields. J. Number Theory 57 (1996), 90-104. | MR | Zbl
, , ,[8] On the resolution of index form equations in dihedral number fields. J. Experimental Math. 3 (1994), 245-254. | MR | Zbl
, , ,[9] Power integral bases in dihedral quartic fields. J. Number Theory 76 (1999), 120-129. | MR | Zbl
,[10] An elementary test for the Galois group of a quartic polynomial. Amer. Math. Monthly 96 (1989), 133-137. | MR | Zbl
, ,