Soit un anneau de Dedekind et son corps de fractions. Soit un groupe fini. Si est un anneau d’entiers -adiques, alors l’application de décomposition de Witt entre le groupe de Grothendieck-Witt des -modules bilinéaires et celui des -modules bilinéaires de torsion est surjective. Pour les corps de nombres , on démontre que est surjective si est un groupe nilpotent d’ordre impair, et on donne des contre-exemples pour des groupes d’ordre pair.
Let be a Dedekind domain with field of fractions and a finite group. We show that, if is a ring of -adic integers, then the Witt decomposition map between the Grothendieck-Witt group of bilinear -modules and the one of finite bilinear -modules is surjective. For number fields is also surjective, if is a nilpotent group of odd order, but there are counterexamples for groups of even order.
@article{JTNB_2000__12_2_489_0, author = {Nebe, Gabriele}, title = {On the cokernel of the {Witt} decomposition map}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {489--501}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, mrnumber = {1823199}, zbl = {0993.11020}, language = {en}, url = {http://www.numdam.org/item/JTNB_2000__12_2_489_0/} }
Nebe, Gabriele. On the cokernel of the Witt decomposition map. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 489-501. http://www.numdam.org/item/JTNB_2000__12_2_489_0/
[ARS 97] Representation theory of Artin algebras. Cambridge studies in advanced math., 36Camb. Univers. Press (1997). | MR | Zbl
, , ,[CuR 81] Methods of representation theory, with applications to finite groups and orders. Vol. I. John Wiley & Sons. (1981). | MR | Zbl
, ,[Dre 75] Induction and structure theorems for orthogonal representations of finite groups. Annals of Math. 102 (1975), 291-325. | MR | Zbl
,[MiH 73] Symmetric bilinear forms. Springer Ergebnisse 73 (1973). | MR | Zbl
, ,[Knu 91] Quadratic and Hermitian Forms over Rings. Springer Grundlehren 294 (1991). | MR | Zbl
,[Miy 90] Equivariant Witt Groups of Finite Groups of Odd Order. J. Algebra 133 (1990), 197-210. | MR | Zbl
,[Mor 88] Maximal Hermitian forms over ZG. Comment. Math. Helv. 63 (1988), no.2, 209-225. | MR | Zbl
,[Mor 90] Equivariant Witt groups. Canad. Math. Bull. 33 (1990), 207-218. | MR | Zbl
,[Neb 99] Orthogonale Darstellungen endlicher Gruppen und Gruppenringe, Habilitationsschrift, RWTH Aachen, Aachener Beiträge zur Mathematik26, Verlag Mainz Aachen (1999). | MR | Zbl
,[Rei 75] Maximal orders. Academic Press (1975). | MR | Zbl
,[Scha 85] Quadratic and Hermitian Forms. Springer Grundlehren 270 (1985). | MR | Zbl
,[Ser 77] Linear Representations of Finite Groups. Springer GTM 42 (1977). | MR | Zbl
,[Tho 84] Bilinear Forms in Characteristic p and the Frobenius-Schur Indicator. Springer LNM 1185 (1984), 221-230.
,[Was 82] Introduction to cyclotomic fields. Springer GTM 83 (1982). | MR | Zbl
,