La notion de développement -adique d’un entier, pour une base donnée, se généralise dans l’anneau des entiers de Gauss au développement d’un entier de Gauss suivant une certaine base , ce développement étant unique. Dans cet article, on s’intéresse à la fonction , désignant la somme de chiffres dans le développement suivant la base . On montre un résultat sur la fonction somme de chiffres pour les nombres non multiples d’une puissance -ième d’un nombre premier. On établit aussi pour un théorème du type Erdös-Kac. Dans ces résultats, l’équidistribution de joue un rôle essentiel. Partant de cela, les démonstrations font alors appel à des méthodes de crible, ainsi qu’à une version du modèle de Kubilius.
Canonical number systems in the ring of gaussian integers are the natural generalization of ordinary -adic number systems to . It turns out, that each gaussian integer has a unique representation with respect to the powers of a certain base number . In this paper we investigate the sum of digits function of such number systems. First we prove a theorem on the sum of digits of numbers, that are not divisible by the -th power of a prime. Furthermore, we establish an Erdös-Kac type theorem for . In all proofs the equidistribution of in residue classes plays a crucial rôle. Starting from this fact we use sieve methods and a version of the model of Kubilius to prove our results.
@article{JTNB_2000__12_1_133_0, author = {Thuswaldner, J\"org M.}, title = {The complex sum of digits function and primes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {133--146}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {1}, year = {2000}, mrnumber = {1827844}, zbl = {1012.11071}, language = {en}, url = {http://www.numdam.org/item/JTNB_2000__12_1_133_0/} }
Thuswaldner, Jörg M. The complex sum of digits function and primes. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 133-146. http://www.numdam.org/item/JTNB_2000__12_1_133_0/
[1] The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc 49 (1941), 121-136. | JFM | MR | Zbl
,[2] On sequences of values of additive arithmetical functions defined on the set of ideals of a field K of degree n over the field of rational numbers (russian). Leningrad Gos. Ped. Inst. Ucen. Zap 274 (1965), 59-70. | MR | Zbl
,[3] Probabilistic number theory i. central limit theorems. Springer, New-York, 1979.
,[4] Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 (1945), 1-125. | MR | Zbl
,[5] Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica 13 (1968), 259-265. | MR | Zbl
,[6] The moments of the sum of digits function in number fields. Canadian Math. Bull. 42 (1999), 68-77. | MR | Zbl
and ,[7] The sum- of- digits-function for complex bases. J. London Math. Soc., to appear. | MR | Zbl
, , and ,[8] An introduction to the theory of numbers. 2nd ed., Clarendon Press, Oxford, 1960. | MR | Zbl
and ,[9] On exponential sums over an algebraic number field. Can. J. Math. 3 (1951), no. 1, 44-51. | MR | Zbl
,[10] Limit theorems for additive functions defined on ordered semigroups with a regular norm (russian). Lietuvos Matematikos Rinkinys 4 (1964), 565-603. | MR | Zbl
,[11] Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975), 255-260. | Zbl
and ,[12] Canonical number systems in algebraic number fields. Acta Math. Hungar. 37 (1981), 405-407. | Zbl
,[13] Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 55 (1991), 286-299. | Zbl
and ,[14] Probabilistic methods in the theory of numbers. Amer. Math. Soc. Translations of Math. Monographs, No. 11, Providence, 1964. | Zbl
,[15] On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61 (1996), no. 1, 25-38. | Zbl
and ,[16] On the arithmetic structure of the integers whose sum of digits is fixed. Acta Arith. 81 (1997), no. 2, 145-173. | Zbl
and ,[17] Elementary and analytic theory of algebraic numbers. Springer, Berlin, 1990. | Zbl
,[18] The sum of digits function in number fields: Distribution in residue classes. J. Number Th. 74 (1999), 111-125. | Zbl
,[19] ____, The fundamental lemma of Kubilius and the model of Kubilius in number fields. Number Theory, Diophantine, Computational and Algebraic Aspects (Berlin) (K. Györy et. al., ed.), 1998, pp. 489-499. | Zbl
[20] Probabilistic number theory in additive semigroups I. Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam (Boston, Basel, Berlin) (B. C. Berndt et. al., ed.), vol. 2, 1996, pp. 839-885. | Zbl
,