On montre qu'un tore stablement rationnel avec un corps de décomposition cyclique est rationnel.
The rationality of a stably rational torus with a cyclic splitting field is proved.
@article{JTNB_1999__11_1_263_0, author = {Voskresenskii, Valentin E.}, title = {Stably rational algebraic tori}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {263--268}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, mrnumber = {1730444}, zbl = {0946.14030}, language = {en}, url = {http://www.numdam.org/item/JTNB_1999__11_1_263_0/} }
Voskresenskii, Valentin E. Stably rational algebraic tori. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 263-268. http://www.numdam.org/item/JTNB_1999__11_1_263_0/
[1] Variétés stablement rationnelles non rationnelles. Ann. Math. 121 (1985), 283-318. | MR | Zbl
, , , ,[2] The geometry of linear algebraic groups. Proc. Steklov Inst. Math. 132 (1973), 173-183. | MR | Zbl
,[3] Fields of Invariants of Abelian Groups. Russian Math. Surveys 28 (1973), 79-105. | MR | Zbl
,[4] On the rationality of tori with a cyclic splitting field. Arithmetic and Geometry of Varieties, Kuibyshev Univ., 1988, 73-78 (Russian). | Zbl
,[5] On the birational equivalence of tori with a cyclic splitting field. Zapiski Nauchnykh Seminarov LOMI 64 (1976), 153-158 (Russian). | MR | Zbl
,