Pour désigne un sous-groupe d’involutions d’Atkin-Lehner de la courbe modulaire de Drinfeld. On détermine tous les et tels que la courbe est rationnelle ou elliptique.
For let be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve . We determine all and for which the quotient curve is rational or elliptic.
@article{JTNB_1998__10_1_107_0, author = {Schweizer, Andreas}, title = {Involutory elliptic curves over $\mathbb {F}_q(T)$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {107--123}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {1}, year = {1998}, mrnumber = {1827288}, zbl = {0930.11040}, language = {en}, url = {http://www.numdam.org/item/JTNB_1998__10_1_107_0/} }
TY - JOUR AU - Schweizer, Andreas TI - Involutory elliptic curves over $\mathbb {F}_q(T)$ JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 107 EP - 123 VL - 10 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1998__10_1_107_0/ LA - en ID - JTNB_1998__10_1_107_0 ER -
Schweizer, Andreas. Involutory elliptic curves over $\mathbb {F}_q(T)$. Journal de théorie des nombres de Bordeaux, Tome 10 (1998) no. 1, pp. 107-123. http://www.numdam.org/item/JTNB_1998__10_1_107_0/
[A&L] Hecke Operators on Γ0(m), Math. Annalen 185 (1970), 134-160. | Zbl
and ,[Ge1] Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpem, Bonner Mathematische Schriften 119 (1980). | MR | Zbl
,[Ge2] Automorphe Formen über Fq (T) mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg 55 (1985), 111-146. | MR | Zbl
,[Ge3] Analytical Construction of Weil Curves over Function Fields, J. Théor. Nombres Bordeaux 7 (1995), 27-49. | Numdam | MR | Zbl
,[G&N] Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995), 689-708. | MR | Zbl
and ,[G&R] Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math. 476 (1996), 27-93. | MR | Zbl
and ,[Ke] A note on involutory Weil curves, Quat. J. Math. Oxford (Ser. 2) 27 (1976), 401-405. | MR | Zbl
,[Kl] On the normalizer of ro(N). Modular Functions of one Variable V, Springer LNM 601, Berlin Heidelberg New York 1977, 239-246. | MR | Zbl
,[M&SD] Arithmetic of Weil Curves, Invent. Math. 25 (1974), 1-61. | MR | Zbl
and ,[Sch1] Zur Arithmetik der Drinfeld'schen Modulkurven X0(n), Dissertation, Saarbrücken 1996
,[Sch2] Modular automorphisms of the Drinfeld modular curves X0(n), Collect. Math. 48 (1997), 209-216. | MR | Zbl
,[Sch3] Hyperelliptic Drinfeld Modular Curves, in: Drinfeld modules, modular schemes and applications, Proceedings of a workshop at Alden Biesen, September 9-14, 1996, (E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel, eds.), World Scientific, Singapore, 1997, pp. 330-343 | MR | Zbl
,