On détermine les solutions rationnelles de l’équation diophantienne dont les dénominateurs sont des puissances de . On applique une idée de Yuri Bilu, qui évite le recours à des équations de Thue et de Thue-Mahler, et qui permet d’obtenir des équations aux (-) unités à quatre termes dotées de propriétés spéciales, que l’on résout par la théorie des formes linéaires en logarithmes réels et -adiques.
The rational solutions with as denominators powers of to the elliptic diophantine equation are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term (-) unit equations with special properties, that are solved by linear forms in real and -adic logarithms.
@article{JTNB_1997__9_2_281_0, author = {de Weger, Benjamin M. M.}, title = {$S$-integral solutions to a {Weierstrass} equation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {281--301}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, mrnumber = {1617399}, zbl = {0898.11009}, language = {en}, url = {http://www.numdam.org/item/JTNB_1997__9_2_281_0/} }
TY - JOUR AU - de Weger, Benjamin M. M. TI - $S$-integral solutions to a Weierstrass equation JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 281 EP - 301 VL - 9 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1997__9_2_281_0/ LA - en ID - JTNB_1997__9_2_281_0 ER -
de Weger, Benjamin M. M. $S$-integral solutions to a Weierstrass equation. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 281-301. http://www.numdam.org/item/JTNB_1997__9_2_281_0/
[B] Solving superelliptic Diophantine equations by the method of Gelfond-Baker ", Preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2 [1994].
, "[BH] Solving superelliptic Diophantine equations by Baker's method", Compos. Math., to appear. | Zbl
AND , "[BW] Logarithmic forms and group varieties ", J. reine angew. Math. 442 [1993], 19-62. | MR | Zbl
AND , "[D] Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. de France, Num.62 [1995]. | Numdam | MR | Zbl
,[GPZ1] Computing integral points on elliptic curves", Acta Arith. 68 [1994], 171-192. | MR | Zbl
, AND , "[GPZ2] Computing S-integral points on elliptic curves", in: H. COHEN (ED.), Algorithmic Number Theory, Proceedings ANTS-II, Lecture Notes in Computer Science VOl. 1122, Springer-Verlag, Berlin [1996], pp. 157-171. | MR | Zbl
, AND , "[RU] Approximation diophantienne de logarithmes elliptiques p-adiques", J. Number Th. 57 [1996], 133-169. | MR | Zbl
AND , "[S] S-integral points on elliptic curves", Math. Proc. Cambridge Phil. Soc. 116 [1994], 391-399. | MR | Zbl
, "[ST] Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms", Acta Arith. 67 [1994], 177-196. | MR | Zbl
AND , "[SW1] On a quartic diophantine equation", Proc. Edinburgh Math. Soc. 39 [1996], 97-115. | MR | Zbl
AND , "[T] Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations", Acta Arith. 75 [1996], 165-190. | EuDML | MR | Zbl
, "[TW1] On the practical solution of the Thue equation", J. Number Th. 31 [1989], 99-132. | MR | Zbl
AND , "[TW2] How to explicitly solve a Thue-Mahler equation", Compos. Math. 84 [1992], 223-288. | EuDML | Numdam | MR | Zbl
AND , "[Y] Linear forms in p-adic logarithms III", Compos. Math. 91 [1994], 241-276. | EuDML | Numdam | MR | Zbl
, "