Soit une extension finie de d’indice de ramification , et soit une -extension abélienne finie de groupe de Galois et d’indice de ramification . Nous donnons un critère en termes des nombres de ramification permettant de décider lorsqu’un idéal fractionnaire de l’anneau de valuation de peut être libre sur son ordre associé . En particulier, si , la codifférente ne peut être libre sur son ordre associé que si (mod ) pour tout . Nous déduisons de cela trois conséquences. Premièrement, si est un ordre de Hopf et si est une -extension galoisienne, où est l’anneau de valuation de , alors (mod ) pour tout . Deuxièmement, si et sont des corps de points de division d’un groupe de Lubin-Tate, avec et , alors n’est pas libre sur . Troisièmement, ces extensions possèdent deux structures galoisiennes de Hopf différentes, mettant en évidence des comportements différents au niveau des entiers.
Let be a finite extension of with ramification index , and let be a finite abelian -extension with Galois group and ramification index . We give a criterion in terms of the ramification numbers for a fractional ideal of the valuation ring of not to be free over its associated order . In particular, if then the inverse different can be free over its associated order only when (mod ) for all . We give three consequences of this. Firstly, if is a Hopf order and is -Galois then (mod ) for all . Secondly, if are Lubin-Tate division fields, with and , then is not free over (. Thirdly, these extensions admit two Hopf Galois structures exhibiting different behaviour at integral level.
Mots clés : Galois module structure, associated order, Hopf order, Lubin-Tate formal group
@article{JTNB_1997__9_1_201_0, author = {Byott, Nigel P.}, title = {Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--219}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {1}, year = {1997}, mrnumber = {1469668}, zbl = {0889.11040}, language = {en}, url = {http://www.numdam.org/item/JTNB_1997__9_1_201_0/} }
TY - JOUR AU - Byott, Nigel P. TI - Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 201 EP - 219 VL - 9 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1997__9_1_201_0/ LA - en ID - JTNB_1997__9_1_201_0 ER -
%0 Journal Article %A Byott, Nigel P. %T Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications %J Journal de théorie des nombres de Bordeaux %D 1997 %P 201-219 %V 9 %N 1 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_1997__9_1_201_0/ %G en %F JTNB_1997__9_1_201_0
Byott, Nigel P. Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 1, pp. 201-219. http://www.numdam.org/item/JTNB_1997__9_1_201_0/
[Be] Arithmétique d'une extension galoisienne à groupe d'inertie cyclique, Ann. Inst. Fourier, Grenoble 28 (1978), 17-44. | EuDML | Numdam | MR | Zbl
,[B-F] Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sc. Paris 274 (1972), A1330-A1333. | MR | Zbl
and ,[Bl-Bu] Über arithmetische assoziierte Ordnungen, J. Number Theory 58 (1996), 361-387. | MR | Zbl
and ,[Bu1] Factorisability and wildly ramified Galois extensions, Ann. Inst. Fourier, Grenoble 41 (1991), 393-430. | EuDML | Numdam | MR | Zbl
,[Bu2] On the equivariant structure of ideals in Galois extensions of fields, Preprint, King's College London (1996).
,[By1] Some self-dual rings of integers not free over their associated orders, Math. Proc. Camb. Phil. Soc. 110 (1991), 5-10; Corrigendum 116 (1994), 569. | MR | Zbl
,[By2] On Galois isomorphisms between ideals in extensions of local fields, Manuscripta Math. 73 (1991), 289-311. | MR | Zbl
,[By3] Tame and Galois extensions with respect to Hopf orders, Math. Z. 220 (1995), 495-522. | MR | Zbl
,[By4] Uniqueness of Hopf Galois structure for separable field extensions, Comm. Alg. 24 (1996), 3217-3228; Corrigendum 24 (1996), 3705. | MR | Zbl
,[By5] Associated orders of certain extensions arising from Lubin- Tate formal groups, to appear in J. de Théorie des Nombres de Bordeaux. | Numdam | MR | Zbl
,[By-L] Relative Galois module structure of integers in abelian fields, J. de Théorie des Nombres de Bordeaux 8 (1996), 125-141. | Numdam | MR | Zbl
and ,[C-L] The associated orders of rings of integers in Lubin-Tate division fields over the p-adic number field, Ill. J. Math. 39 (1995), 30-38. | MR | Zbl
and ,[C] Taming wild extensions with Hopf algebras, Trans. Am. Math. Soc. 304 (1987), 111-140. | MR | Zbl
,[C-M] Hopf algebras and local Galois module theory, in Advances in Hopf Algebras, Lect. Notes Pure and Appl. Math. Series, Vol. 158 (J. Bergen and S. Montgomery, eds.), Dekker, 1994, pp. 1-14. | MR | Zbl
and ,[E] Galois module structure of ideals in wildly ramified cyclic extensions of degree p2, Ann. Inst. Fourier, Grenoble 45 (1995), 625-647. | Numdam | MR | Zbl
,[E-M] Galois module structure of the integers in wildly ramified cyclic extensions, J. Number Theory 47 (1994), 138-174. | MR | Zbl
and ,[F] Sur les idéaux d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Paris 276 (1973), A1483-A1486. | MR | Zbl
,[G] Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z. 210 (1992), 37-67. | MR | Zbl
,[G-P] Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), 239-258. | MR | Zbl
and ,[L] Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine u. angew. Math. 201 (1959), 119-149. | MR | Zbl
,[RC-VS-M] Galois module structure of rings of integers, Math. Z. 204 (1990), 401-424. | MR | Zbl
, and ,[S1] Local Class Field Theory, in Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.), Academic Press, 1967. | MR
,[S2] Local fields (Graduate Texts in Mathematics, Vol. 67), Springer, 1979. | MR | Zbl
,[T1] Formal groups and the Galois module structure of local rings of integers, J. reine angew. Math. 358 (1985), 97-103. | MR | Zbl
,[T2] Hopf structure and the Kummer theory of formal groups, J. reine angew. Math. 375/376 (1987), 1-11. | MR | Zbl
,[U] Integral normal bases in Galois extensions of local fields, Nagoya Math. J. 39 (1970), 141-148. | MR | Zbl
,[V1] Ideals of an abelian p-extension of an irregular local field as Galois modules, Zap. Nauchn. Sem. Lening. Otdel. Math. Inst. Steklov. (LOMI) 46 (1974), 14-35; English transl. in J. Soviet Math. 9 (1978), 299-317. | MR | Zbl
,[V2] Ideals of an abelian p-extension of a local field as Galois module, Zap. Nauchn. Sem. Lening. Otdel. Math. Inst. Steklov. (LOMI) 57 (1976), 64-84; English transl. in J. Soviet Math. 11 (1979), 567-584. | MR | Zbl
,[W] Normal basis implies Galois for coconnected Hopf algebras, Preprint, Pennsylvania State University (1992).
,