Soit un polynôme qui est une puissance d’un polynôme de degré et dont les racines réelles sont simples. Etant donnés les entiers positifs satisfaisant pgcd et si , nous démontrons que l’équation
Let be a monic polynomial which is a power of a polynomial of degree and having simple real roots. For given positive integers with and gcd with whenever , we show that the equation
@article{JTNB_1997__9_1_183_0, author = {Saradha, N.}, title = {On blocks of arithmetic progressions with equal products}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {183--199}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {1}, year = {1997}, mrnumber = {1469667}, zbl = {0889.11010}, language = {en}, url = {http://www.numdam.org/item/JTNB_1997__9_1_183_0/} }
Saradha, N. On blocks of arithmetic progressions with equal products. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 1, pp. 183-199. http://www.numdam.org/item/JTNB_1997__9_1_183_0/
[1] Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc. 65 (1969), 439-444. | MR | Zbl
,[2] On the irreducibility of certain polynomials, Bull.Amer. Math. Soc. 52 (1946), 844-856. | MR | Zbl
and ,[3] Criteria for the irreducibility of polynomials, Ann. of Math. 34 (1993), 81-94. | JFM | MR | Zbl
and ,[4] On arithmetic progressions with equal products, Acta Arithmetica 68 (1994), 89-100. | MR | Zbl
, and ,[5] On values of a polynomial at arithmetic progressions with equal products, Acta Arithmetica 72 (1995), 67-76. | MR | Zbl
, and ,[6] London Math. Soc. Lecture Note Series, Number Theory, Paris 1992-3, éd. Sinnou David, 215 (1995), 231-244. | MR | Zbl
,