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Universal Codes and Unimodular Lattices

par ROBIN CHAPMAN ET PATRICK SOLÉ

RÉSUMÉ. Les codes résidus quadratiques binaires de longueur
p + 1 produisent par construction B et bourrage des réseaux de
type II comme le réseau de Leech. Récemment, il a été prouvé que
les codes résidus quadratiques quaternaires produisent les mêmes
réseaux par construction A modulo 4. Nous montrons de manière
directe l’ équivalence des deux constructions pour p ~ 31. En
dimension 32 nous obtenons un réseau extrémal de type II qui
n’est pas isomètre au réseau de Barnes-Wall BW32. On considère
également l’équivalence entre construction B modulo 4 plus bour-
rage et construction A modulo 8. En dimension 48 elles conduisent
toutes deux à une nouvelle description du réseau extrémal de type
II appelé P48q.

ABSTRACT. Binary quadratic residue codes of length p + 1 pro-
duce via construction B and density doubling type II lattices like
the Leech. Recently, quaternary quadratic residue codes have
been shown to produce the same lattices by construction A mod-
ulo 4. We prove in a direct way the equivalence of these two con-
structions for p ~ 31. In dimension 32, we obtain an extremal
lattice of type II not isometric to the Barnes-Wall lattice BW32.
The equivalence between construction B modulo 4 plus density
doubling and construction A modulo 8 is also considered. In di-
mension 48 they both led to a new description of the extremal
type II lattice P48q.

1. Introduction

In [2], Bonnecaze, Sol6 and Calderbank introduce for primes p - :1:1

(mod 8), codes 6 and R, the universal extended quadratic residue codes,
of length p + 1 over the 2-adic integers Z2°O. For positive integers s they
consider their reductions Q23 and N23 modulo 2; Q2 and N2 are just the
standard binary extended quadratic residue codes, while 64 and -A74 are the
quaternary quadratic residue codes. Given a code C of length n over Z4

Mots-clés : Quadratic residue codes, Lattices, construction A, construction B, density dou-
bling.
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define A(C) as the set of vectors in Z" which reduce modulo 4 to elements
of C. (mod 8) the lattice is even and unimodular ([2]
Corollary 4.1); if p = 7 it is the E8 lattice, while if p = 23 it is the Leech
lattice.

Here we show, by means of an explicit isomorphism, that if p ~ -1
(mod 8) and p  31 then is isometric to a lattice L(Q2) con-
structed from the binary quadratic residue code in a manner (construction
B plus density doubling ) generalizing the original construction of the Leech
lattice. If p = 23 this yields a short proof of what is perhaps the simplest
construction of the Leech lattice [2]. If p = 31 this, combined with results
of Koch and Venkov, shows that BSBM32 introduced in [1] is not isometric
to the Barnes-Wall lattice BW32 . In section §4 we consider a quaternary
analogue of this situation, replacing construction B by construction B mod-
ulo 4, and construction A mod 4 by construction A mod 8. We show, inter
alia, that P48q can be obtained in the latter way from a quadratic residue
code of length 48 over Z8.

2. The main result

Throughout this section we assume that p is a prime satisfying p = -1
(mod 8). We also fix an integer r such that r -1 (mod 4), and r2 + p = 0
(mod 32). In addition if p  31 we will assume that r2 + p = 32. (If p = 7,
23 or 31, then r = 5, -3 or 1 respectively.)
We first outline a construction of lattices from binary codes of length

p + 1. Consider a self-orthogonal linear subcode C of Z2P+’, containing the
all-ones word. Define L(C) to be the sublattice of ZP+r generated by the
following types of vectors:

(1) all vectors of shape (8 OP),
(2) all vectors of shape (42 
(3) all vectors of shape (21 OP+1-1) whose support coincides with the

support of an element of C,
(4) any vector of shape (r 1P).

This can be recast as the union of two cosets

of the lattice 2B(C) obtained, up to scaling, by construction B applied to
C namely

with denoting the parity-check code of length p + 1. It is clear that
L (C) is a lattice, of index in If the code C is doubly even,
then the norm of each vector in L(C) is divisible by 16. It follows that if C is
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self-dual and doubly even then the lattice ~L(C) is even and unimodular.
If C is 62 or R2 then it has these properties. We give four examples of this
construction.

By the norm of an element in Euclidean space we mean the square of its
length, and the minimal norm of a lattice is the least norm of a non-zero el-
ement of the lattice. It is easy to see that the minimum norm of ~L(~2) is

where mw(C) is the minimum (Hamming) weight
of the code C.

THEOREM 1. The lattices ~A(Q4) and are isometric for p  31.

Proof. Assume p  31. We recall the definition of 6 from §III of (2). Let
6 be the square root of -p in Z2- with 8 == -1 (mod 4). Note then that
6 - -r (mod 16). The vectors ma (a E Fp U {oo}) are defined as the rows
of the matrix

(The rows and columns of this matrix are labelled in the order oo, 0, l, ... ,
p -1.) The matrix W is called a Jacobsthal matrix , and is instrumental in
building Hadamard matrices of Paley type [10, Chap. II]. We collect here
the properties that we need

where J stands for the all-one matrix. See [10, Chap. II, Lemma 7] for
proofs of (Jl) and (J2). To prove (J3), (J4) observe firstly that by (Jl)
we have, knowing that -1 is not a quadratic residue, that A + B = -1.



372

Secondly, writing x for the Jacobi symbol we have

and by the character property of X

the last equality coming from (J2).
The coordinate positions in the code are labelled oo, 0,1, ... , p - 1, re-

garded as elements of the projective line over F. The universal extended
quadratic residue code is now defined as

where Q2°O is the field of 2-adic numbers. A similar definition holds for N
with replaced by 
We can now describe A(04) as the set of vectors in congruent

modulo 4 to elements of ~. Let na E be the rows of the matrix

so that for a E Fp U {oo} we have ma (mod 16). Since by (J2)
we have NNt = 321 the matrix is orthogonal. We claim that this
matrix maps 78L(jV2 to ~A(Q4)’ This is equivalent to saying that N

maps to A(Q4)’ Note that these codes and lattices are preserved
by the automorphism Q coming from the permutation (0 1 2 ... p - 1)
on Fp U f oo}, and this automorphism maps ma to mOl+l and na to 
This automorphism is the shift in the cyclic construction of the QR codes.
We proceed to show that the images by N of the four types of vectors in
construction L above lie in 11 ( C~4 ) .

Since the na E A(~4), the matrix N takes the coordinate vectors, which
lie in into A(~4). For convenience let (a, b; c; d) denote the vec-
tor with oo-coordinate a, 0-coordinate b, and generic a-coordinate c, and
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generic ,Q-coordinate d where a and 0 are any quadratic residue, and
quadratic non-residue respectively. Now

which lies in and is congruent to modulo 8. Hence

+ mo) E A(Q4). Applying Q it follows that + rrta) E A(~4)
for all a E Fp, and so 2 (rna + E A(Q4) for all E Fp U {oo}. Hence

ivN E A(~4) for all v of the shape (42 Op-1). We next compute

where Q’ is the set of quadratic non-residues modulo p. The last coordinates
estimates come from (J3), (J4). Again this has integer coordinates, and is
congruent modulo 4 + ¿j=o mj), so this vector lies in A(C~4). It
follows that 

I/ B

for each k E FP. But Nz is generated by the vectors whose supports are
the sets U (k + Q’). ([2, p.370, III. A.]). It follows that if v has the

shape (2a and whose support is the same as that of an element of
then E A(Q4). Finally

and so e A(Q4). Hence C A(Q4)’ and comparing
determinants we see that = A(Q4). Since L(Q2) and L(M) are
isometric the Theorem follows. D

3. Application to the cases of P = 23, 31.

If (al, ... , an) is an element of a code over Z4, then its Euclidean weight
is w(al) + ... + w(an) where

The minimum Euclidean weight mew(C) of a code C over Z4 is the least
Euclidean weight of its non-zero elements. If C is a linear code then the
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minimum norm of A(C) is min(l6,mew(C)). For p = 23 and p = 31, the
minimum norm of L(92) is 32, and so the minimum norm of A ( ~4) is 16.
Hence mew(Q4) &#x3E; 16. In [2] this is proved in a more elaborate way for
p = 23.

In [8] Koch and Venkov show that for the five non-isomorphic doubly even
self-dual binary codes Cl, ... , C5 of length 32, the lattices L(Cl), ... , L(C5)
are all non-isometric. We can take 01 = Q2, and C2 to be the Reed-Muller
code RM(2, 5). Since L(RM(2, 5)) is isometric to the Barnes-Wall lattice
BW32 [9], it follows that tA(Q4) for p = 31 is not isometric to BW3z, con-
firming a conjecture of [1]. It is known that there are only two unimodular
lattices in dimension 32 with minimal norm 4 and an automorphism of order
31 [12]. From the results of [1] and of the current paper we can infer than
both can be constructed by construction A mod 4 applied to an extended
quaternary cyclic code: the quaternary Reed-Muller code QRM(2, 5) in
the case of BW32 and the extended quadratic residue code 64 in the case
of BSBM32 := Both lattices also appear in [11, 4].

4. Quaternary Analogue
We assume in this § that p &#x3E; 47 is a p e =- -1 (mod 8), and that the

integer r - 1 (mod 4) satisfies

if p = 47, 71 and

if p = 79,103,127. The corresponding values of r are r = -7,5 in first case
and r = -7, 5,1 in the second. For a quaternary code C of length p + 1 we
define 

-

and

For an octonary code C8 of length p + 1, we define

We have the following analogue of Theorem 1:

THEOREM 2. The lattices )L4 (1ij4) and -1-A4 (~8) are isometric for p = 47,
71, 79, 103, 127.
The proof is analogous to the proof of Theorem 1 and is omitted.

COROLLARY 1. For p = 47 the lattice has norm 6, and the code

Qs has euclidean minimum weight 48.
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Proof. Follows from the preceding theorem by noticing that ~4 has eu-
clidean minimum weight 24 [1, 11, 5]. 0
The lattice L4 (~4) was considered in [3] and is isometric to P48q. Adopt-

ing the definition of P48q in §7.7 of [6], the orthogonal matrix

takes P48q to L4 (N~) (which is isometric to L4 (~4)) by a similar argument
to Theorem 1. Similarly it is tantamount to conjecture that the conjectural
extremal type II lattice of dimension 80 of example 3 of [13] is taken by

into ~4(~/4).

5. Conclusion

It would be interesting to lift the remaining three Conway-Pless codes
over Z4 and obtain by construction A4 the three remaining zero-defect lat-
tices of the Koch-Venkov classification. Similarly the construction of P48q
by construction B3 applied to ternary QR codes and density doubling [6,
p.149] suggests a construction modulo 6. Eventually, quaternary double
circulant codes which produce an even extremal unimodular lattice in di-
mension 40 [5] should be amenable to a similar analysis.
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