Nous décrivons un algorithme dû à Gauss, Shanks et Lagarias qui étant donné un entier mod non carré et la factorisation de , détermine la structure du -sous-groupe de Sylow du groupe des classes de l’ordre quadratique de déterminant ; la complexité de cet algorithme est en temps polynomial probabiliste en .
We describe an algorithm due to Gauss, Shanks and Lagarias that, given a non-square integer mod and the factorization of , computes the structure of the -Sylow subgroup of the class group of the quadratic order of discriminant in random polynomial time in .
Mots clés : quadratic 2-class groups, binary and ternary quadratic forms
@article{JTNB_1996__8_2_283_0, author = {Bosma, Wieb and Stevenhagen, Peter}, title = {On the computation of quadratic $2$-class groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {283--313}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, mrnumber = {1438471}, zbl = {0870.11080}, language = {en}, url = {http://www.numdam.org/item/JTNB_1996__8_2_283_0/} }
TY - JOUR AU - Bosma, Wieb AU - Stevenhagen, Peter TI - On the computation of quadratic $2$-class groups JO - Journal de théorie des nombres de Bordeaux PY - 1996 SP - 283 EP - 313 VL - 8 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1996__8_2_283_0/ LA - en ID - JTNB_1996__8_2_283_0 ER -
Bosma, Wieb; Stevenhagen, Peter. On the computation of quadratic $2$-class groups. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 2, pp. 283-313. http://www.numdam.org/item/JTNB_1996__8_2_283_0/
[1] The Magma algebra system I: the user language, J. Symbolic Comput. (to appear). | Zbl
, , ,Density computations for real quadratic units, Math. Comp. 65 (1996), no. 215, 1327-1337. | MR | Zbl
and ,[2] A course in computational algebraic number theory, Springer GTM 138, 1993. | MR | Zbl
,[3] Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sous-exponentiel, Séminaire de Théorie des Nombres Paris 1990-91, Birkhäuser, 1993, pp. 35-46. | MR | Zbl
, , ,[4] Primes of the form x2 + ny2, Wiley-Interscience, 1989. | MR | Zbl
,[5] Ein Algorithmus zur Bestimmung der Klassengruppe positiv definiter binärer quadratischer Formen, Dissertation, Universität des Saarlandes, Saarbrücken, 1991.
,[6] Disquisitiones Arithmeticae, Gerhard Fleischer, Leipzig, 1801.
,[7] A rigorous subexponential algorithm for computation of class groups, J. Amer. Math. Soc. 2 (1989), no. 4, 837-850. | MR | Zbl
, ,[8] Worst-case complexity bounds for algorithms in the theory of integral quadratic forms, J. of Algorithms 1 (1980),142-186. | MR | Zbl
,On the computational complexity of determining the solvability or un-solvability of the equation X2 - DY2 = -1, Trans. Amer. Math. Soc. 260 (1980), no. 2, 485-508. | MR | Zbl
,Gauss's ternary form reduction and the 2-Sylow subgroup, Math. Comp. 25 (1971), no. 116, 837-853Erratum: Math. Comp. 32 (1978), 1328-1329. | MR
,[9] The number of real quadratic fields having units of negative norm, Exp. Math. 2 (1993), no. 2,121-136. | MR | Zbl
,A density conjecture for the negative Pell equation, Computational Algebra and Number Theory, Sydney 1992, Kluwer Academic Publishers, 1995, pp. 187-200. | MR | Zbl
,