On démontre deux théorèmes limites fonctionnels pondérés pour la fonction introduite par K. Matsumoto.
In this paper two weighted functional limit theorems for the function introduced by K. Matsumoto are proved.
@article{JTNB_1996__8_1_143_0, author = {Laurin\v{c}ikas, Antanas}, title = {Limit theorems for the {Matsumoto} zeta-function}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {143--158}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {1}, year = {1996}, mrnumber = {1399951}, zbl = {0859.11053}, language = {en}, url = {http://www.numdam.org/item/JTNB_1996__8_1_143_0/} }
Laurinčikas, Antanas. Limit theorems for the Matsumoto zeta-function. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 143-158. http://www.numdam.org/item/JTNB_1996__8_1_143_0/
[1] The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statist. Inst., Calcutta, 1982.
,[2] Convergence of Probability Measures, John Wiley, 1968. | MR | Zbl
,[3] Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg- New York, 1977. | MR | Zbl
,[4] A weighted limit theorem for the Riemann zeta-function, Liet. matem. rink. 32(3) (1992), 369-376. (Russian) | MR | Zbl
,[5] Value-distribution of zeta-functions, Lecture Notes in Math. 1434 (1990),178-187. | MR | Zbl
,[6] Introduction to complex analysis, Moscow, 1969. (Russian) | Zbl
,