In this note we prove that the language of a numeration system is the language of a -shift under some assumptions on the basis. We deduce from this result a partial answer to the question when the language of a numeration system is regular. Moreover, we give a characterization of the arithmetico-geometric sequences and the mixed radix sequences that are basis of a numeration system for which the language is regular. Finally, we study the Ostrowski systems of numeration and give another proof of the result of J. Shallit : the Ostrowski systems having a regular langage are exactly the ones associated to a quadratic number.
@article{JTNB_1995__7_2_473_0, author = {Loraud, Nathalie}, title = {$\beta $-shift, syst\`emes de num\'eration et automates}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {473--498}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {2}, year = {1995}, mrnumber = {1378592}, zbl = {0843.11013}, language = {fr}, url = {http://www.numdam.org/item/JTNB_1995__7_2_473_0/} }
Loraud, Nathalie. $\beta $-shift, systèmes de numération et automates. Journal de théorie des nombres de Bordeaux, Tome 7 (1995) no. 2, pp. 473-498. http://www.numdam.org/item/JTNB_1995__7_2_473_0/
[Be 1]: Comment écrire les nombres entiers dans une base qui n'est pas entière. à paraître dans Acta. Math. Acad. Sci. Hungar. | Zbl
,[Be 2]: Questions diverses relatives aux systèmes codés: applications au θ-shift. Preprint
,[Be 3]: Nombres de Perron et problèmes de rationnalité. S. M. F. (1991), 198-200.
,[Be 4]: Le θ-shift sans peine. en préparation.
,[Be 5]: Développement en base θ, répartition modulo un de la suite (xθn) n≽0, langages codés et θ-shift. Bull. Soc. math. France 114 (1986), 271-323. | EuDML | Numdam | Zbl
,[Bl]: β-expansions and symbolic dynamics. Theoret. Comput. Sci. 65 (1989), 131-141. | Zbl
,[Br]: On algebraic equations with all but one root in the interior of the unit circle. Math. Nachr. 4 (1951), 250-257. | MR | Zbl
,[Co]: Uniform tag sequences. Math. Syst. Theory 6 (1972), 164-192. | MR | Zbl
,[Fr 1]: Systems of numeration. Amer. Math. Monthly 92 (1985), 105-114. | MR | Zbl
,[Fr 2]: The use and usefulness of numeration systems. Inform. and Comput. 81 (1989), 46-61. | MR | Zbl
,[Fro 1]: Representations of numbers and finite automata. Math. Syst. Theory 25 (1992), 37-60. | MR | Zbl
,[Fro 2]: Linear Numeration Systems of Order Two. Inform. & Comput. 77 (1988), 233-259. | MR | Zbl
,[Fro 3]: Systèmes de numération linéaires et θ-représentations. Theoret. Comput. Sci. 94 (1992), 223-236. | Zbl
,[F-So]: Finite β-expansions. Ergod. Th. & Dynam. Sys. 12 (1992), 713-723. | Zbl
, ,[G-L-T]: Odometers and systems of numerations. Acta Arith. to appear. | MR | Zbl
, et ,[G-T 1]: Contributions to Digit Expansions with Respect to Linear Recurrences. J. Number Th. 36 (1990), 160-169. | MR | Zbl
, ,[G-T 2]: α-expansions, Linear recurrences and the Sum-of-Digits Function. Manuscripta Math. 70 (1991), 311-324. | Zbl
, ,[I-T]: Markov subshifts and realization of β-expansions. J. Math. Soc. Japan 26 1 (1974), 33-55. | Zbl
and ,[Li]: The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys. 4 (1984), 283-300. | MR | Zbl
,[L-S]: Continued fractions and linear recurrences. Math. Comp. 61 (1993), 351-354. | MR | Zbl
, ,[Os]: Bemerkungen zur Theorie der Diophantishen Approximationene. Abh. Math. Sem. Hamburg 1 (1922), 77-98. | JFM
,[Pa]: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. | Zbl
,[P-T]: On Digit Expansions with Respect to Linear Recurrences. J. Number Th. 33 (1989), 243-256. | MR | Zbl
, ,[Re]: Representations for real numbers and their ergodic properties. Acta Math. Ac. Sci. Hungar. 8 (1957), 477-493. | MR | Zbl
,[Sc]: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269-278. | MR | Zbl
,[Sh 1]: A generalization of automatic sequences. Theoret. Comput. Sci. 61 (1988), 1-16. | MR | Zbl
,[Sh 2]: Numeration Systems, Linear Recurrences, and Regular Sets. Inform. and comput. to appear | MR | Zbl
,