@article{JTNB_1995__7_1_51_0, author = {Colliot-Th\'el\`ene, Jean-Louis}, title = {L'arithm\'etique du groupe de {Chow} des z\'ero-cycles}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {51--73}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {1}, year = {1995}, mrnumber = {1413566}, zbl = {0870.14002}, language = {fr}, url = {http://www.numdam.org/item/JTNB_1995__7_1_51_0/} }
TY - JOUR AU - Colliot-Thélène, Jean-Louis TI - L'arithmétique du groupe de Chow des zéro-cycles JO - Journal de théorie des nombres de Bordeaux PY - 1995 SP - 51 EP - 73 VL - 7 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1995__7_1_51_0/ LA - fr ID - JTNB_1995__7_1_51_0 ER -
Colliot-Thélène, Jean-Louis. L'arithmétique du groupe de Chow des zéro-cycles. Journal de théorie des nombres de Bordeaux, Tome 7 (1995) no. 1, pp. 51-73. http://www.numdam.org/item/JTNB_1995__7_1_51_0/
[1] Torsion algebraic cycles, K2 and Brauer groups of function fields, in L.N.M. 844 (éd. M. Kervaire et M. Ojanguren) Springer 1981. | Zbl
,[2] On the Chow groups of certain rational surfaces, Ann. Sci. Ec. Norm. Sup. 14 (1981), 41-59. | Numdam | MR | Zbl
,[3] Algebraic K-theory, motives and algebraic cycles, Proceedings of the ICM, Kyoto, Japan 1990, Springer 1991, Vol. 1, 43-54. | MR | Zbl
,[4] Gersten's conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Sup. 7 (1974), 181-202. | Numdam | MR | Zbl
and ,[5] Remarks on correspondences and algebraic cycles, Am. J. Math. 105 (1983), 1235-1253. | MR | Zbl
and ,[6] Arithmetic on curves of genus 1 (VII). The dual exact sequence, J. für die reine und angew. Math. (Crelle) 216 (1964), 150-158. | MR | Zbl
,[7] Hilbert's theorem 90 for K2, with application to the Chow groups of rational surfaces, Invent. math. 71 (1983), 1-20. | MR | Zbl
,[8] Cycles algébriques de torsion et K-théorie algébrique, in Arithmetical Algebraic Geometry, C.I.M.E. 1991, E. Ballico ed., L. N. M. 1553, Springer-Verlag, 1993. | MR | Zbl
,[9] L'équivalence, rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sc. Paris 292 (1981), 723-725. | MR | Zbl
et ,[10] Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. math. 105 (1991), 221-245. | MR | Zbl
et ,[11] La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Sup. 10 (1977), 175-229. | Numdam | MR | Zbl
et ,[12] On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), 421-447. | MR | Zbl
and ,[13] La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375-492. | MR | Zbl
et ,[14] Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), 763-801. | MR | Zbl
, et ,[15] Intersections of two quadrics and Châtelet surfaces, I, J. für die reine und angew. Math. (Crelle) 373 (1987) 37-107; II, ibid. 374 (1987) 72-168. | MR | Zbl
, and ,[16] Zero-cycles and cohomology on real algebraic varieties, à paraître dans Topology. | MR | Zbl
and ,[17] Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory 7 (1993), 477-500. | MR | Zbl
et ,[18] Hasse principle and weak approximation for pencils of Severi-Brauer varieties and similar varieties, Journal für die reine und angew. Math. (Crelle) 453 (1994), 49-112. | MR | Zbl
and ,[19] Groupe des classes de zéro-cycles sur les surfaces rationnelles définies sur un corps local, Thèse, Université de Paris-Sud, Juin 1993.
,[20] A finiteness theorem for the symmetric square of an elliptic curve, Invent. math. 109 (1992), 307-327. | MR | Zbl
,[21] Intersection Theory, Ergeb. der Math. und ihrer Grenzgeb. Bd. 2, Springer-Verlag, Berlin, 1984. | MR | Zbl
,[22] Un théorème de finitude arithmétique sur les groupes réductifs, C. R. Acad. Sc. Paris 316 (1993), 701-704. | MR | Zbl
,[23] Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), 221-260. | MR | Zbl
,[24] Global class field theory of arithmetic schemes, Contemp. Math. 55, vol. 1, 255-331. | MR | Zbl
and ,[25] Torsion zero-cycles on the self-product of a modular elliptic curve, preprint 1994.
and ,[26] Duality theorems for curves over p-adic fields, Invent. math. 7 (1969),120-136. | MR | Zbl
,[27] Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes Congrès intern. math. Nice, 1970, Tome I, 401-411. | MR | Zbl
,[28] K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. Akad. Nauk SSSR 46 (1982) 1011-1146 = Math. USSR Izv. 21 (1983) 307-341. | MR | Zbl
and ,[29] Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J. 67 (1992), 387-406. | MR | Zbl
,[30] Arithmetic Duality Theorems, Perspectives in Math. vol. 1, Academic Press 1986. | MR | Zbl
,[31] Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math. 122 (1995), 83-117. | MR | Zbl
and ,[32] Torsion algebraic cycles on varieties over local fields, in Algebraic K-theory: Connections with Geometry and Topology, Lake Louise 1987, J.F. Jardine and V.P. Snaith ed., Kluwer Academic Publishers 1989. | MR | Zbl
,[33] Some observations on motivic cohomology of arithmetic schemes, Invent. math. 98 (1989), 371-404. | MR | Zbl
,[34] Cycle map on torsion algebraic cycles of codimension two, Invent. math. 106 (1991), 443-460. | MR | Zbl
,[35] A finiteness theorem for cohomology of surfaces over p-adic fields and an application to Witt groups, in Algebraic K-Theory, Quadratic Forms and Central Simple Algebras, 1992 A. M. S. Summer Conference (Santa Barbara), B. Jacob and A. Rosenberg ed., Proc. Symposia in Pure Mathematics, Vol. 58, Part 2, 403-416. | MR | Zbl
and ,[36] K-theory of orders and their Brauer-Severi schemes, Thèse, Université de Göteborg, 1985.
,[37] Galois descent and class groups of orders, in Orders and their applications, Oberwolfach 1984, I. Reiner and R. W. Roggenkamp ed., L. N. M. 1142, Springer-Verlag, 1985. | MR | Zbl
,[38] Zero-cycles on rational surfaces over number fields, Invent. math. 91 (1988),505-524. | MR | Zbl
,[39] Chow groups of codimension two and l-adic realizations of motivic cohomology, in Séminaire de théorie des nombres, Paris 1991/1992, éd. Sinnou David, Progress in Mathematics 116 (1993), 247-277. | MR | Zbl
,[40] A propos d'une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle, Séminaire de théorie des nombres, Bordeaux 1981/1982, exp. 33. | MR | Zbl
,[41] Monodromy and torsion algebraic cycles, Thèse, Arizona State University, Juillet 1993.
,