
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

CHARLES F. SCHWARTZ
An elliptic surface of Mordell-Weil rank 8 over
the rational numbers
Journal de Théorie des Nombres de Bordeaux, tome 6, no 1 (1994), p. 1-8
<http://www.numdam.org/item?id=JTNB_1994__6_1_1_0>

© Université Bordeaux 1, 1994, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_1994__6_1_1_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


1-

An elliptic surface of Mordell-Weil
rank 8 over the rational numbers

par CHARLES F. SCHWARTZ

ABSTRACT. - Néron showed that an elliptic surface with rank 8, and with
base B = P1Q, and geometric genus =0, may be obtained by blowing up
9 points in the plane. In this paper, we obtain parameterizations of the
coefficients of the Weierstrass equations of such elliptic surfaces, in terms
of the 9 points. Manin also describes bases of the Mordell-Weil groups of
these elliptic surfaces, in terms of the 9 points; we observe that, relative to
the Weierstrass form of the equation,

Y2 = X3 + AX2 + BX + C

(with deg(A) ~ 2, deg(B) ~ 4, and deg(C) ~ 6) a basis {(X1,Y1),... ,
(X8, Y8)} can be found with Xi and Yi polynomial of degree ~ 2, ~ 3,
respectively. One explicit example is computed, showing that for almost
every elliptic surface given by a Weierstrass equation of the above form,
a basis may be found with Xs and Yi polynomial of degree ~ 2, ~ 3,
respectively.

1. Introduction

In 1950, Ndron [6] showed that an elliptic surface with base P = PQ can
be obtained by blowing up 9 rational points in the plane. If the points are
in sufficiently general position, the elliptic surface has Mordell-Weil rank
8. Manin [4], described a basis of the Mordell-Weil group of this elliptic
surface in terms of these points.

(Elliptic surfaces with higher rank have been found: in 1954, Ndron [7]
described a method of finding elliptic surfacs with rank at least 11; recently,
Shioda [10] simplified Ndron’s recipe and made the construction explicit.)
How can one tell, for any particular example, if the surface has rank 8?

We will use Shioda’s formula, for which we need to know the Kodaira types
of the singular fibers of the elliptic surface; and for this, we need to write
the equation of the elliptic surface in Weierstrass form.
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In §2, we write the transformations necessary to change a cubic equation
of a certain type into Weierstrass form:

(with deg(A)  2, 4, and deg(C)  6); we also show what
happens to sections of the original surface, when it is transformed into this
form. In particular, we exhibit a basis, consisting of sections of the form
I ai = Yi) }, with Xi and Y polynomials of degree  2, 3, respectively.
We also state our main theorem, Theorem 1: that if E - B = Pi cC is
almost any elliptic surface with geometric genus pg = 0 (and hence given by
an equation of the form above), then its Mordell-Weil group has a basis as
above. (Shioda and Oguiso have published a generalization of this result:
The Mordell-Weil group of every rational elliptic surface is generated by
sections of this type; cf. ~11J, Corollary 2.3.)

In §3, we describe the computer program we use to check if a given
elliptic surface has Mordell-Weil rank 8. We also write the equation of one
elliptic surface with rank 8, together with a basis of the given type.

2. The construction of the elliptic surface

A corollary to Max Noether’s Theorem (see Fulton [2]) states the follow-
ing : if two cubic curves, C1 and C2, intersect in the 9 points Po, ... , psi
and if the cubic curve C contains PQ, ... , P7, then C contains P8 also. On
the other hand, 9 points in general determine a unique cubic curve, and 8
points in general determine a family of cubic curves, parameterized by a
line. Taken together, these two statements imply that, in general, 8 points
in the plane determine a unique 9th point, through which all members of
the family of cubics determined by the 8 points must pass.

The blow-up of 9 points in the plane may be described as the surface
defined by the family of cubics going through 9 such points; alternatively,
if Fl and F2 are polynomials which determine C¡ and C2, members of such
a family, then an equation for the elliptic surface is

where u and v may be viewed as homogeneous coordinates for the base of
the elliptic surface.

Let Po, ... , P7 be 8 points in the projective plane, in sufficiently general
position. ’Succiently general’ includes such things as ’no three on a line,
no six on a conic’. Without loss of generality, we may assume that Pa =
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(0,1, o), PI = (1,0,0), and P2 = {o, o,1). Then every cubic through these
8 points has an equation of the form

where u and v are necessarily not both zero. (When we literally choose the
5 points P3 .. - , P7, we will solve for the coefiicients a, b, c, d, and e, as linear
forms in u and v.) This equation defines the elliptic surface we want, with
rank 8 for P3 , ... , P7 ‘sufficiently general’. For the rest of this section, we
shall assume that the points P3, ... , P7 , are in sufficiently general position.

Let P8 be the glh point as discussed above. Each of the points Pi de-
termines a section, of the elliptic surface. Manin [4] shows that, with
ao chosen as the zero-section (i.e. the identity of the Mordell-Weil group),
the sections ~1, ... , a8 generate a subgroup of index 3 (see also [1]).

Let P9 be the point obtained by finding the ‘3’’d’ point of intersection
of the line tangent to Po in each fiber. Manin shows that the section, ~9,
defined by this point, together with the sections ~1, ... , a7 generates the
full Mordell-Weil group.

(In the following, we will use lower case x and y to refer to solutions of
(1), and capital X and Y to refer to solutions of (2), (see below) . Equal
subscripts, then, refer to different forms of the same section.)
We use standard techniques (see Mordell [5]) to put (1) into Weierstrass

form. In particular, reparameterize the curve by the following steps:

The line through P9 with slope m, intersects the curve in two other
points, whose x-coordinates are found by solving a quadratic equation.
These other two points are rational if and only if the discriminant, disc,
of the quadratic polynomial in x, is a square, (disc is a cubic polynomial
in m) . Then the curve is birationally equivalent to y2 = disc. We change
variables slightly and get: 

LEMMA 1. The equation of the elliptic surface defined by (1) may be rewrit-
ten as

there

and
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Furthermore, if (x, y) is a solutions of (1), then (X, Y) is a solution of
(2), where

and

LEMMA 2. The section o9 is given by

and

One can see that the section does not have Xg and Yg polynomial, since
its intersection with the zero section is non-empty. However, using the
bilinear form defined by Cox and Zucker, we determined that the section
0"10 = a9 - + or2) must have Xlo and Ylo polynomial.

LEMMA 3. The section as above has coordinates for (1) given by

and

and it has coordinates for (2) given by

and

It is clear that c’1,... a~7, and Qlo form a basis, if indeed the elliptic
surface has rank 8.
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Every elliptic surface, E ---~ B - with p. = 0 can be given by
a Weierstrass equation

with deg (Gi )  2i (see Kas [3]); Shioda’s formula ([9]) shows that almost all
such elliptic surfaces have Mordell-Weil rank 8. Since rational sections can
be found such that (X, Y) = (quadratic, cubic) by satisfying algebraic con-
ditions on the coefficients 02,01,00, of x = Ct2U2 + ai u + ao (see Schwartz
[8]), we may conclude that, if, for one example a basis may be found for
which (X, Y) = (quadratic, cubic), then for almost all elliptic surfaces a
basis can be found among the sections with (X, Y) = (quadratic, cubic).
Our main theorem is proved by Proposition 1, in which we find such an
example:

THEOREM 1. Almost all elliptic surfaces, E ~ B = PIC, with pg - 0,
have bases consisting of sections which are polynomial, with deg(X )  2,
and deg(Y)  3.

~ 

3. A numerical example

We wrote a computer program to run on the Rider College DEC 2060
computer, which takes as input the coordinates of five points in the plane.
The program then determines whether the elliptic surface determined by
these five points, together with the points (0,1, 0) , ( 1, 0, o) , and (0, 0,1 ) ,
has Mordell-Weil rank 8; if the Mordell-Weil rank is 8, then the sections
found in §2 indeed give a basis of the Mordell-Weil Group.

In particular, the program solves for the coefficients (a, b, c, d, e, and k)
in the equation

(k is the common denominator needed, so that the program can use integer
arithmetic). The program then transforms the equation into Weierstrass
form

and computes the discriminant, A = 4G2 - 27~ and its derivative, ð.’.
Since the rank of the Mordell-Weil group is given by Shioda’s formula

[9]:
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(where g = genus of the base = 0,
tl = number of singular fibers of type Ib (with b &#x3E; 0),
t2 = number of singular fibers of other types, and

pg = geometric genus of the Elliptic surface),

with equality in the case of pg = 0, a sufficient condition for the rank to be
8 is for A to have 12 simple roots. We would like to check this condition
by checking that the greatest common divisor of A and 11’ (found via the
Euclidean algorithm) is a constant, but, in fact, the program finds the
greatest common divisor of A and A’ modulo various small primes; if the
greatest common divisor is a constant modulo any of these primes, then in
fact, the greatest common divisor is a constant, A has no multiple roots,
and the rank of the Mordell-Weil group is 8.

This program was written in BASIC, with arrays to handle the multi-
ple precision integer arithmetic. The values which follow were computed
using double precision real variables in FORTRAN. (When this paper was
written, we were unaware of programs such as Maple and Macsyma which
would do symbolic computations; we have since used Maple to check the
computations in this paper.)

PROPOSITION 1. The elliptic surfaces determined by the 8 points (0,1,0),
(1,0,0), (0,0,1), (l,l,l), (-1,2,1), (-2,-1,1), (2,-2,1), {3,4.,1} (by the method
described above) has rank 8.

An equation for this elliptic surface is

where

When this equation is put into Weierstrass form, an equation for this elliptic
surface is
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where

A basis for the Mordell-Weil group of this elliptic surface is given in the
following table:
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