For an algebraic number field and a prime , define the number to be the maximal number such that there exists a Galois extension of whose Galois group is a free pro--group of rank . The Leopoldt conjecture implies , ( denotes the number of complex places of ). Some examples of and with have been known so far. In this note, the invariant is studied, and among other things some examples with are given.
@article{JTNB_1993__5_1_165_0, author = {Yamagishi, Masakazu}, title = {A note on free pro-$p$-extensions of algebraic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {165--178}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {1}, year = {1993}, mrnumber = {1251235}, zbl = {0784.11052}, language = {en}, url = {http://www.numdam.org/item/JTNB_1993__5_1_165_0/} }
TY - JOUR AU - Yamagishi, Masakazu TI - A note on free pro-$p$-extensions of algebraic number fields JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 165 EP - 178 VL - 5 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1993__5_1_165_0/ LA - en ID - JTNB_1993__5_1_165_0 ER -
Yamagishi, Masakazu. A note on free pro-$p$-extensions of algebraic number fields. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 1, pp. 165-178. http://www.numdam.org/item/JTNB_1993__5_1_165_0/
[1] On some questions in the theory of Γ-extensions of algebraic number fields, Izv. Akad. Nauk. SSSR. Ser. Mat. 40 (1976), 477-487; English transl. in Math. USSR-Izv. 10 (1976), 453-462. | Zbl
,[2] Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365. | MR | Zbl
et ,[3] On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. | MR | Zbl
,[4] On Zl-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. | MR | Zbl
,[5] Corps p-rationnels, corps p-réguliers, et ramification restreinte, Séminaire de Théorie des Nombres de Bordeaux, (1987-1988), Exposé 10, 10-01-10-26. | Zbl
et ,[6] Kuz'min, Local extensions associated with l-extensions with given ramification, Izv. Akad. Nauk. SSSR. Ser. Mat. 39 (1975), 739-772; English transl. in Math. USSR-Izv. 9 (1975), 693-726. | MR | Zbl
[7] Classification of Demushkin groups, Canad. J. Math. 19 (1967), 106-132. | MR | Zbl
,[8] Sur les p-extensions des corps p-rationnels, Math. Nachr. 149 (1990), 163-176. | MR | Zbl
,[9] Sur l'arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris 1987-88, Progr. Math., 81, Birkhäuser Boston, MA,1990, 155-200. | MR | Zbl
et ,[10] Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Archiv der Math. 22 (1971), 337-357. | MR | Zbl
,[11] Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa, Compositio Math. 46 (1982), 85-119. | Numdam | MR | Zbl
,[12] Formations de classes et modules d'Iwasawa, Number Theory Noordwijkerhout 1983, Lecture Notes in Math. 1068 (1984), 167-185. | MR | Zbl
,[13] Sur la torsion de certains modules galoisiens II, Séminaire de Théorie des Nombres, Paris 1986-87, Progr. Math., 75, Birkhäuser Boston, MA, 1988, 271-297. | MR | Zbl
,[14] Extensions with given points of ramification, Inst. Hautes Études Sci. Publ. Math. 18 (1964), 295-319; English transl. in Amer. Math. Soc. Transl. Ser. 2 59 (1966), 128-149; see also Collected Mathematical Papers, 295-316. | Numdam
,[15] Cohomologie galoisienne, Lecture Notes in Math. 5 (1964). | MR | Zbl
,[16] Epimorphisms of Demushkin groups, Israel J. Math. 17 (1974), 176-190. | MR | Zbl
,[17] Examples of extensions with Demushkin group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 146-149; English transl. in J. Soviet Math. 24-4 (1984), 480-482. | MR | Zbl
,[18] Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q, J. Reine Angew. Math. 341 (1983), 111-129. | MR | Zbl
,[19] Duality theorems for Γ-extensions of algebraic number fields, Compositio Math. 55 (1985), 333-381. | Numdam | Zbl
,[20] On Galois groups of p-closed algebraic number fields with restricted ramification, J. Reine Angew. Math. 400 (1989), 185-202. | MR | Zbl
,[21] On Galois groups of p-closed algebraic number fields with restricted ramification II, J. Reine Angew. Math. 416 (1991), 187-194. | MR | Zbl
,[22] On the center of Galois groups of maximal pro-p extensions of algebraic number fields with restricted ramification, J. Reine Angew. Math. 436 (1993), 197-208. | MR | Zbl
,