@article{JTNB_1992__4_2_187_0, author = {Halter-Koch, F. and Narkiewicz, W{\l}adys{\l}aw}, title = {Polynomial mappings defined by forms with a common factor}, journal = {S\'eminaire de th\'eorie des nombres de Bordeaux}, pages = {187--198}, publisher = {Universit\'e Bordeaux I}, volume = {Ser. 2, 4}, number = {2}, year = {1992}, zbl = {0778.12002}, language = {en}, url = {http://www.numdam.org/item/JTNB_1992__4_2_187_0/} }
TY - JOUR AU - Halter-Koch, F. AU - Narkiewicz, Władysław TI - Polynomial mappings defined by forms with a common factor JO - Séminaire de théorie des nombres de Bordeaux PY - 1992 SP - 187 EP - 198 VL - 4 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1992__4_2_187_0/ LA - en ID - JTNB_1992__4_2_187_0 ER -
%0 Journal Article %A Halter-Koch, F. %A Narkiewicz, Władysław %T Polynomial mappings defined by forms with a common factor %J Séminaire de théorie des nombres de Bordeaux %D 1992 %P 187-198 %V 4 %N 2 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_1992__4_2_187_0/ %G en %F JTNB_1992__4_2_187_0
Halter-Koch, F.; Narkiewicz, Władysław. Polynomial mappings defined by forms with a common factor. Séminaire de théorie des nombres de Bordeaux, Série 2, Tome 4 (1992) no. 2, pp. 187-198. http://www.numdam.org/item/JTNB_1992__4_2_187_0/
[1] Finiteness properties of polynomial mappings, to appear. | MR
, ,[2] Fundamentals of Diophantine Geometry, Springer 1983. | MR | Zbl
,[3] Introduction to algebraic geometry, Interscience Publ. 1958. | MR | Zbl
,[4] Invariant sets of morphisms in projective and affine number spaces, J. Algebra 20 (1972), 419-434. | MR | Zbl
,[5] Sur les transformations polynomiales et rationnelles, Sém. Th. Nomb. Bordeaux exp. n° 29, 1971-1972. | MR | Zbl
,[6] Sur une conjecture de W. Narkiewicz, C. R. Acad. Sc. Paris 274 (1972), 1836-1838. | MR | Zbl
,[7] On transformations by polynomials in two variables, II, Coll. Math. 13 (1964), 101-106. | MR | Zbl
,[8] Lectures on the Mordell-Weil-Theorem, Aspects of Mathematics, Braun schweig 1989. | Zbl
,[9] Algebra, 2. Teil, Springer 1967. | Zbl
,