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Galois Structure of de Rham Cohomology.

par TED CHINBURG*

1. Introduction.

This article has two purposes. The first is to summarize (without proofs )
the results in [C] concerning the Galois module structure of the de Rham
cohomology of tame covers of schemes. The second purpose is to prove
an alternate interpretation of [C] for irreducible smooth curves over finite
fields. The object of [C] is to generalize to schemes the theory of the Galois
module structure of tamely ramified rings of integers.

In classical Galois structure theory one considers finite tame Galois ex-
tensions LIK of number fields. To generalize this, we recall in §2 Grothen-
dieck and Murre’s concept of a tamely ramified G-cover f : i X - Y of
schemes over a Noetherian ring A, where G is a finite group. We then
discuss the results of [C] concerning Euler characteristics in Grothendieck
groups of A[G]-modules of suitable complexes of sheaves of G-modules on
X. In §3 we define via de Rham complexes an invariant which

generalizes the stable isomorphism class of the ring of integers of L in the
classical case. We then discuss a conjectural generalization of Martinet’s
Conjecture when the ground ring A is a finitely generated Z~l/m~-module
for some integer m prime to the order of G. The main result of [C], which
is summarized in §4, is a precise counterpart for smooth projective varieties
over a finite field of Frohlich’s conjecture concerning rings of integers. One
consequence of this result is that the generalization of Martinet’s Conjec-
ture discussed in §3 holds if A is a finite field.
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2. Tame covers and Euler characteristics.

We will begin by recalling from [GM] the definition of a tamely ramified
cover of schemes.

DEFINITION 2.1. Let Y be a normal scheme which is of finite type over
a Noetherian ring A. Let D be a Zariski closed subset of Y which is of

codimension at least one. A morphism of schemes f : X - Y is a tamely
ramified covering of Y relative to D if the following conditions hold:

(a) f is finite.
(b) f is 6tale over Y - D.
(c) Every irreducible component of X dominates an irreducible com-

ponent of Y.

(d) X is normal.
(e) Let D have codimension 1 in Y and let x be a point of X over y.

Then is a tamely ramified extension of D.V.R.’s, i.e. the
associated residue field extension is separable and the ramification
degree is prime to the residue characteristic if this characteristic is
positive.

DEFINITION 2.2. Let f : X ~ Y and D be as in Definition 2.1, and
suppose G is a finite group. We will say f : X - Y is a tame G-cover
relative to D if X x)¿~ (Y - D~ ~ Y - D is a G-torsor when G is regarded
as a constant group scheme over Y - D (c.f. [M, This is equivalent
to the requirement that X Xy (Y - Y - D is Galois with group G in
the sense of [M, p. 43 - 44].

Example 2.3. Suppose is a finite Galois extension of global fields
which is at most tamely r amified in the usual sense. Let G = 

If L and Ii are number fields, let 0 j, and 0 T( be their rings of integers.
The natural morphism f : X = Y = is then a
tame G-cover relative to the closed subset D of Y consisting of the finitely
many closed points over which f ramifies. If L and 7~ are global function
fields, then they are the function fields of smooth projective curves X and
Y. The corresponding morphism f : X - Y is a tame G-cover relative to
the closed subset D of Y over which f ramifies.

.Remark 2.4. We let groups act on rings and modules on the left a,nd on
schemes on the right. Suppose f : X ~ Y is a tame G-cover as in Definition
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2.2. Let R(X) be the function ring of X (c.f. [EGA I, 7.1.2]). Since
X is normal and Noetherian, the finitely many irreducible components of
X are disjoint, and R(X ) is the direct sum of the function fields of the

generic points of these components. Definition 2.2 implies R(X) is a Galois
extension of R(Y) with Galois group G in the sense of [M, p. 43-44].
Because X is the normalization of Y in R(X), the action of G on R(X)
gives an action of G on O x . Furthermore, f is affine since f is finite, and
[L, Prop. 1.9] implies f is surjective.
DEFINITION 2.5. Let f : X - Y be a tame G-cover as in Definition 2.2. A
sheaf of Oy[GJ-Modules is a sheaf of 0-y-modules having a G-action which
commutes with the action of Oy.. A quasi-coherent 0 x-G-Module T is a
quasi-coherent sheaf T of O x--modules on X having an action of G which is
compatible with the action of G on O,x in the following sense. Suppose V
is an open subset of Y, T E G, a E r(f -1 (V ), 0,N-) and m E (V), T).
Then r( am) = 7(a) r( m). We will always assume that morphisms between
sheaves of Oy [G]-Modules (resp. respect both the actions
of G and of 0~ (resp. of G and of O x- ).

In Definition 2.5 we have used the terminology OX-G-Module rather
than to signal the fact that the left action of OX on the
underlying sheaf of an O x--G-Module is twisted in the indicated way by the
action of G. 

’

DEFINITION 2.6. A G-module M is cohomologically trivial for G if the
Tate cohomology group ÎIi(H, M) vanishes for all subgroups H of G and
all integers i .

The following result underlies the Galois structure invariants we will
consider.

THEOREM 2.7. Suppose f : X - Y is a tame G-cover relative to a divisor
D on Y having normal crossings. Let T be a quasi-coherent sheaf of 0,--
G-iVIoduIes. Then aII of the stalks of the sheaf f*T of O-Y[G]-Modules on
Y are cohomologically trivial for G.

The proof of Theorem 2.7 relies on Abhyankhar’s Theorem, which states
that locally in the 6tale topology on Y, f : X - Y is induced from a
Kummer covering relative to a subgroup of G. In [C, Theorem 3.7] a
slightly stronger result is proved, in which f : X - Y is replaced by an
arbitrary subquotient cover of f.

Example 2.8. Suppose LIK is a finite Galois extension of number fields
which is at most tamely ramified iri the usual sense. Let I be a 
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stable integral ideal of L. Theorem 2.7 implies Noether’s Theorem that I
is cohomologically trivial for G. To see this, let f be the natural morphism
X = Y = S’pec(OK) and let T be the sheaf i associated to I.
The OT[G]-module I is cohomologically trivial for G if and only if all of
its localizations at primes of 0~ are, and these localizations are the stalks
of 

We now consider Euler characteristics of complexes of sheaves of G-
modules. To do this, we assume for the rest of §1 that Y is proper over
A.

Let 7~(y, G) (resp. 7~ (.4, G)) be the category of complexes of quasi-
coherent 0-y[G]-Modules (resp. A[G]-modules) which are bounded below
and which have coherent (resp. finitely generated) cohomology. Morphisms
in these categories are homotopy classes of morphisms of complexes. A
morphism is a quasi-isomorphism if it induces isomorphisms in cohomology.

Let D+(Y, G) and D+(A, G) be the localizations of h+(Y, G) and
K++(A, G), respectively, with respect to the multiplicative systems of quasi-
isomorphisms in these categories. Thus D+(Y, G) has the same objects as
K+(Y, G), and the morphisms of D+(Y, G) are obtained by formally in-
verting all quasi-isomorphisms in ~~+(Y, G); see [H2] for details.

By [H2, p. 87 - 89], the global section functor 1~ has a right derived func-
tor Er+ : D+(Y, G) D+(A, G). Let F* be a complex in G)) =
Ob(D+(Y, G)). By [EGA III, Cor. 0.12.4.7] the Cech hypercohomology
complex H(U, F*) of F* with respect to a finite open affine cover U =

of Y is isomorphic to Er+(Fe) in D+(A, G). We now recall the
definition of F’ ), since the Euler characteristics we will define can be
most readily understood in terms of Cech hypercohomology.

For each integer i &#x3E; 0 and i + 1-tuple (ko, ..., ki) of elements of the index
set I let !7~... ,~ = n ... Fix an ordering of the (finite) set I. The
group of alternating i-cochains with coefficients in the sheaf Fj is defined
to be

where the product is over all i + 1-tuples of elements of I which are in
increasing order. Let be the bicomplex whose (i, j)" term is
Ci(U, Fj). The horizontal boundary map d" of ce(u, Fe) results from the
boundary map of Fe, while the vertical boundary map d’ is given by the
usual Cech coboundary formula ( c.f. [Hl, §111.4]). The Cech hypercoho-
mology complex of F* is the total complex of
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ce(u, F*). Recall that Tot(ce(u, Fe» has nth. term

and the boundary map d of Tot(ce(u, Fe» is defined by d(x) = d’(x) +
(-1)~d"(x) for Thus if the only non-zero term of F* is
the sheaf F° in degree 0, HLl, F*) is the usual Cech cohomology complex
H(l,l, F°).

In the following result we do not need to assume Y is normal.

THEOREM 2.9. Suppose Y is proper over A. Let F* be a bounded complex
in ~~+(Y, G) such that the stalks of each term of F’ are cohomologically
trivial for G. Then RI~+(F’) is isomorphic in D+(A, G) to a bounded

complex M* of finitely generated A~G~-modules which are cohomologically
trivial for G. Let be the Grothendieck group of all finitely gen-
erated A~G~-modules which are cohomologically trivial for G. The Euler
characteristic X(M*) = depends only on Fe,
and will be denoted XRr+(Fe). If Fe consists of a single non-zero term F
in’degree 0, then will aIso be denoted by XEr+(F).

A complex Me with the above properties can be constructed in the
following way. Let U be a finite open affine cover of Y. By the inductive
procedure of [Hl, Lemma 111.12.3] (see also [EGA III, Prop. 0.11.9.1])
we can construct a complex N* of free finitely generated A[G]-modules
which is bounded above (but not necessarily below) together with a quasi-
isomorphism of complexes N° - H(U, F*). Suppose Fj = 0 for j 
n, so that the jib. term of is also trivial for j  n. Let M*

be the complex which results from N° by letting M-7 equal N~ ( resp.

resp. f 0}) if j &#x3E; n (resp. j = n, resp. j  n). The resulting
morphism H(U, F*) is then a quasi-isomorphism. It is shown in
the proof of [C, Theorem 2.1] that M* and x(M*) have all the properties
stated in Theorem 2.9.

Remark ,~.~0. Theorem 2.7 provides many examples of complexes of sheaves
F* satisfying the hypotheses of Theorem 2.9. Explicitly, suppose T* is a
bounded complex of quasi-coherent O,x-G-Modules on X and that the coho-
mology sheaves of T’ are coherent. Then Fe = f*T° is a bounded complex
of quasi-coherent Oy[G)-Modules having coherent cohomology sheaves, and
the stalks of each term of F* are cohomologically trivial for G. If the un-

derlying ring A is a field, the existence of a complex Me as in Theorem 2.9
when F° = f*T’ was proved by Nakajima in [Nl, Theorem 1].
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Example 2.11. Let A = Z. With the notations of Example 2.8, 
is the stable isomorphism class (I) in CT(Z[G]) of the 
01,-ideal I. This is because the Cech cohomology complex of I

relative to U = consists of I in degree 0 and is trivial in all
other dimensions. Since I is cohomologically trivial for G by the remarks
of Example 2.8, we can let Nf’ = H(U, fi) in Theorem 2.9.

It is not difficult to use the Cech construction of M* to verify that the
following properties of xAr+ (c.f. [C, Remarks 2.6 and 2.7]).

PROPOSITION 2.12. Let F" = (F~) be a bounded complex of coherent
whose stalks are cohomologically trivial for G. Then

PROPOSITION 2.13. Let H be a subgroup of G. Suppose ~’’ (resp. T’) is
a bounded complex in h+(Y, G) (resp. f~+(Y, H)~, and that the stalks of
the terms of F* (resp. Te) are cohomologically trivial for G (resp. for H).
Then

where (resp. is the map induced by restriction of op-
erators from G to H (resp. by applying the functor M - =

Z[G] M which induces H-modules to G), If H is normal in G then

where is the map resulting from the functor M H from
G-modules to G/ H modules.

The following result is Proposition 2.4 of [C].

PROPOSITION 2.14. Suppose F* is as in Theorem 2.9. Let Hq(Fe) be the
q" ( coherent cohornology sheaf of F’. Let v : CT(A[G]) - 
be the natural forgetful map to the Grothendieck group Go(A[G]) of all
finitely generated A~G’~-modules. Then
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where (M)’ is the class in of the module M. Ifeach of the sheaves

Fq appearing in F* are coherent, then

Example 2.15. Suppose that F* in Proposition 2.14 consists of a single co-
herent sheaf F° in dimension 0. Proposition 2.14 shows that 

is a canonical lift to CT(A[G]) of the usual coherent Euler char-
acteristic Ep (-1)~’ ~ F° ))’ of Fo in 

Remark ~.16. If the order of G is prime to the residue characteristic of every
prime ideal of A, then every A[G]-module is cohomologically trivial for G
and v is an isomorphism. Thus Proposition 2.14 gives a way to compute
XRr+(Fe) for such A.

Example 2.17. Let us show that if A is a field then

in CT(A[G]), where x(Oy’) _ ~~ ~(-1)~’ ~ is the Euler

characteristic of 01’~ over A. (If A is a field, (2.1) is contained in Proposition
2.3 of [EL]; see also [N2, Theorem 1].) If G is the trivial group, (2.1) follows
from Remark 2.16 and Example 2.15. For arbitrary G one then obtains (2.1)
by induction from the trivial subgroup of G using Proposition 2.13.

We end this section by discussing the counterpart of Example 2.11 for
global function fields.

THEOREM 2.18. Let A = Fq be the finite field with q elements. Suppose
f : X - Y is a tame G-cover of smooth projective irreducible curves over
A and that A is the field of constants of Y. Suppose E is a G-stable Weil
divisor on X, so that is an in the sense of Definition

2.5. By viewing E as a Cartier divisor on X we may regard as a

subsheaf of the constant sheaf on Y whose generic fibre is the function field
L of X . Let U be a non-empty af-Ene open subset of Y and let = Y - U.
We can find an element Q E L with the following properties.

(a) r(U, (3 has finite index in h(U, f*Ox-(E));
(b) the stalk of f.0,N-(E) at y has finite index

(c) All of the G-modules appearing in (a~ and (b) are cohomologically
tri vi aI for G.



8

For all such Q we have

in where g(Y) = is the genus of Y.

Proof. Let K be the function field of Y. Then LIK is a Galois extension
with group G, and by the normal basis Theorem we can find an element
y E L such that ~[G] ’ 7 = L. Let y be the sheaf of Oy[G]-Modules
on Y defined by 1~(Y, Oy[G] ’ 7) = rev, Oy )(G~ ~ y C L for all open subsets
Y of Y . Over a dense open subset of Y the stalks ofOY[G] ’ 7 and f *Ox (E)
are equal; at all other y E Y, these stalks are rank one O-Y,,[G]-submodules
of L which are taken into one another by multiplication by a sufficiently
high power of a uniformizing parameter at y. Hence by multiplying 7 by
a non-zero element of K having poles of high order at each point of Sao
and zeros of large order at enough points of U = Y - Soo we arrive at an
element Q E L which satisfies conditions (a) and (b).

Since Q is a normal basis generator for L over K, r(u, Oy)[G] {3 and
Oy~~ ~G~ ~ (3 are cohomologically trivial for G. By Theorem 2.7, the stalks
of f *OX(E) are cohomologically trivial for G. The localizations of the

r(U, f*Oh-(E)) at prime ideals of 1~(U, OY) are the
stalks of f.Ox(E) at the points of U. It follows that feU, is also

cohomologically trivial for G, proving (c).
We now prove (2.2). We can find an open affine subset V of Y which

contains Soo such that !*Ox(E) and Q have equal stalks over V -
Since U n V c V - this implies

We may also conclude using property (b) of Theorem 2.18 that r(V, f* O x (E)) C
rev, Q) and

In view of Theorem 2.18(a) we now have a diagram
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in which the first and third rows are the Cech cohomology complexes
(3) and H(~!, f*0,~-(E~~ with respect to Ll = {U, v}. The

vertical arrows, either up or down, in the first column of this diagram are
injective.
We now compute (3) and using

H(U, (3) and H(U, f*Ox(E)~ in the way described after just af-
ter Theorem 2.9. By comparing the Euler characteristic in CT(A[G]) (in
the sense of Theorem 2.9) of the middle row of (2.5) with the Euler char-
acteristics of the top and bottom rows we find

Since ¡3 is isomorphic to we have

from Example 2.17. Combining (2.6), (2.4) and (2.7) proves (2.2).
Specializing Theorem 2.18 and rewriting the last term on the right side

of (2.2) gives the following result.

COROLLARY 2.19. With the notation of Theorem suppose E is the
zero divisor, so 0,N-(E) = Ox Let OT, = and OK = r(U,Ov.).
Then (resp. is the ring of elements of the function field. L of X
(resp. K of Y~ which are regular Let 0 j.,~, (resp. OK,oo) be ring
of elemen ts of L (resp. K) which are regu 1ar above S,,.. Th en for (J E L as
in Theorem 2.18,
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in CT(A[G]).

3. de Rham Galois structure invariants.

For the rest of this paper we assume Y be a normal scheme which is

proper and of finite type over a Noetherian ring A. The connected com-
ponents of Y are then irreducible; we assume that all of these components
have a fixed dimension d. We suppose f : X - Y is a tame G-cover relative
to a divisor D on Y in the sense of Definitions 2.2 and 2.1. For simplicity,
we assume D has strictly normal crossings; a weaker hypothesis is used in
§ 4 of [C] .

Since f is finite, X is normal, proper and of finite type over A, and all of
the connected components of X are irreducible and of dimension d. We will
write the of differentials on X as Let = ¡BiOX be
the ith exterior power of Ox for i &#x3E; 0. The action of G on 0~ described
in Remark 2.4 gives rise to an action of G on which makes Q~ into a
coherent sheaf of OV-G-Modules in the sense of Definition 2.5.

From Remark 2.10 we have the following result.

PROPOSITION 3.1. The direct image is a coherent 
Modules whose stalks are cohomologicalIy trivial for G.

Hence by Theorem 2.9 we can make

DEFINITION 3.2. Let

in CT(A[G]), where d = dim(X ~.

Example 3.3. If X has dimension d = 1, then *(xly) = 
In particular, if we let A = Z in Example 2.8 then T(XIY) is the stable
isomorphism class in CT(Z[G]) of the ring of integers of L.

The are coherent, and H, (y, H3 (X, because f is finite.
Hence Proposition 2.14 gives 

’ ’

PROPOSITION 3.4. Let v ; CT(A[G]) - be the natural forgetful
homomorphism to the Grothendieck group of all finitely generated A[G]-
modules. Then
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where (M)’ is the class in Go(A[G]) of the A[G]-module M.

We now develop a generalization to schemes of the statement of Mar-
tinet’s Conjecture about tame rings of integers.

DEFINITION 3.5. Let = I free A[G]-modules }
Suppose B H A is a homomorphism or Noetherian rings such that A is
a finitely generated module over the image of B. Restriction of operators
from A[G] to B[G] then induces a homomorphism 

.

Remark 3.6. Suppose B = Z[l/m] for some integer m prime to the order of
G. The natural map from locally free finitely generated B[G]-modules to
B[G]-modules which are cohomologically trivial for G identifies the locally
free classgroup of B[G] with Suppose is any
maximal B-order in Q[G] containing The kernel subgroup 
of = be defined to be the kernel of the homo-

morphism induced by tensoring modules with Mover
B [G] .
CONJECTURE 3.7. (Kernel Conjecture) Suppose B = Z[l/m] for some
integer m prime to the order of G, and that there is a ring homomor-
phism B ~--&#x3E; A making A a finitely generated B-module. Suppose X
and Y are projective over A and that X and Spec(A) are regular. Then

E lies in D(B[G]).
It is a natural question to what extent this Conjecture is true under

weaker hypotheses.

Example 3.8. Suppose X, Y and A = B = Z are as in Example 3.3, so
that (Or.) in CI(Z[G]). The assertion that (Or,) lies
in D(Z[G]) is Martinet’s Conjecture and was proved by Fr6hlich (see [F,
§11).

The following Theorem is deduced in [C, Theorem 4.11] from a sharper
result, which is recalled in Theorem 4.6 below.

THEOREM 3.9. The Kernel Conjecture is true if A is a finite field.

Remark 3.10. If A is a finite field then does not change
when A is replaced by a subfield of A. In particular, to prove Theorem 3.9,
one can reduce to the case A = Fp and B = Z.

In Example 4.13 of [C] it is shown that the Kernel Conjecture for tame
covers of integral models of modular curves concerns the Galois module
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structure of weight two cusp forms. We end this section with a result

about when f : X - Y is a tame G-cover of smooth
projective irreducible curves over a finite field A as in Theorem 2.18 and
Corollary 2.19.

PROPOSITION 3.11. With the notations of Corollary 2.19,

in Cl(Z[G]) = There is an integer n depending only on G
with the following property. Suppose that the degree over Fp of the residue
field of each point of Soo is divisible by n. Then

To prove Proposition 3.11, note that if A is a finite field of characteristic
p, then = 0. Hence (3.1) follows immediately from Corollary
2.19. One now deduces (3.2) from (3.1) by applying the following Lemma

with R = 0 K,oo to the R[G]-module

LEMMA 3.12. Suppose R is a ring of characteristic p &#x3E; 0 which is either a

finite field or an excellent Dedekind ring having finite residue fields. Sup-
pose A is a finite subfield of R, and let G be a finite group. There is an

integer n depending only on G with the following property. Suppose M is
a finite R[GI-module which is cohomologically trivial for G. Then

(a) M is a projective A[G]-module, and
(b) If the degree of each residue field of R over Fr is divisible by n

then = 0 in 

Proof. To prove part (a), it will suffice to show 0

for all A[G]-modules M’. The spectral sequence ==&#x3E;

M’) degenerates to give H~ (G, HomA(M, M’)) = M’).
Since p ~ = 0, it will now suffice by Chap. IX, Cor. to
Thm. 4] to show 0 if Gp is a p-Sylow sub-
group of G. The argument of [Sl, Thm. IX.5] shows M is a free 
module. It follows that HomA(M, M’) is also a free so

H’(Gp,HomA(M,M’» = 0 and (a) is proved.
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To prove (b), note that since M is finite, M is supported on a finite
set of prime ideals of R. Hence we can reduce to the case in which R is a
discrete valuation ring. A power of the maximal ideal of R annihilates M.
Hence M is a module for the completion of R, and we can reduce to the
case in which R is complete. Since R has characteristic p and finite residue
field, the Teichmuller lift of the multiplicative group of the residue field of
R gives rise to an embedding of the residue field of R into R. Thus we can
reduce to the case in which R is a finite field. In view of (a), it will suffice
to show there is an integer n depending only on G such that if n divides
the relative degree ~R : Fp] then 0 for all finite projective
R[G]-modules M.

Let R be an algebraic closure of R. By [S2, Chap. 14], there are up to
isomorphism only finitely many projective indecomposable R[G]-modules,
and each finitely generated projective is a direct sum of pro-
jective indecomposables. Furthermore, two projective R~G~-modules are
isomorphic if and only if they become isomorphic on tensoring with R
over R. Finally, each projective indecomposable is defined
over the subfield T of R obtained by adjoining to Fp all roots of unity
of order dividing that of G. There is an n depending only on G such
that if n divides [R : Fp] then R contains ~’ and [R : ~’J is divisible by
the ( finite) order of Hence each projective R[G]-module M
has the form M = R OT M’ for some projective T~G~-module M’. Then

[R : T] - = 0 in which completes the
proof.

4. Root numbers and Galois structure over finite fields.

In this section we assume X and Y are projective schemes over A = Fp
and that X is regular. Since A is perfect, this implies X is smooth over
A. As in §3 we assume f : X - Y is a tame G cover over divisor D on Y
which has strictly normal crossings.

By Remark 2.4, f : X - Y is finite and surjective. Hence for each

element y of the set Y° of closed points of Y there is an x(y~ E X’ lying
over y. Define Gx(y) ( resp. to be the decomposition group (resp.
the inertia group) of x(y~ in G. The Frobenius Frob(z(y)) of x(y~ over
y is the unique element of Gx(y)/Ix(y) which induces the automorphism
a H of the residue field k(z(y)) of x(y~, where deg(y) is the degree
of the residue field k(y~ over F~,.

Let V be a finite dimensional complex representation of G, and let Y’
be a Zariski open or closed subset of Y. The Artin L-function of V with
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respect to Y’ is

Since Y’ is open or closed in Y, it follows from Grothendieck’s Theorem
on the rationality of L-series [M, Thm. VI.13.3] that L (Y’, V, t~ is a finite
product

for some E Q. Define

Using work of Milne and Illusie, it is shown in [C, Theorem 6.2] that
the class in CT(Fp[G]) both determines and is determined by the
p-adic absolute values of the E(Y, V) as V varies over all of the complex
irreducible representations of G. We will not state this result precisely
here, but we will recall its consequences to E 

For F a perfect field let F be an algebraic closure of F and let SZF =
Gal(F/F). Let J(E) denote the group of ideles of a number field E. Define
J(Q) to be the direct limit over all number fields E of J(E). Let Rc;
be the additive group of virtual characters over Q of the finite group G.
Let be the unit ideles of the idele group J(Q[G]) of Q[G]. As

in [F] we have a determinant map Det : J(Q [GI) 1--4 J(Q)).
Fr6hlich’s Hom-description of the classgroup Cl(Z[G]) states that there is
an isomorphism

normalized in the following way. Suppose a = (a"~ E is an idele
of Q[G] such that aoo = 1 if oo is the infinite place of Q. Then Mn =

w finite a locally free rank one Z[G]-module. The homomor-
phism p is the unique one sending the class of Det(a) E (Ref, J(Q))
to the class of Mo for all a as above.

DEFINITION 4.1. For each place v of Q let i" : (Q)) = (Q~0QQ~)" ~ J(Q~
be the natural inclusion. be the unique extension to Q_ of the usual
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v-adic absolute value on We will also to denote the unique
function 1 1,, : (Q)" H (Q),, such o t = t o 1 1,, for all embeddings
t : Q,, ~ (Q),, over Q,,. We can write each element a of J(Q) as a = (~?;)~
with at) E (Q)£. Let I J(Q) - J(Q) be the homomorphism for which
a .. - v

DEFINITION 4.2. For each complex representation V of G let V be the
dual of V and let X. be the character of V. Suppose Y’ is a Zariski

open or closed subset of Y and that v is a place of Q. Define E(Y’)
(resp. 6~(V~), resp. to be the function in (resp.
Hom(Ra, J(Q)), resp. Hom(Re;, J(Q))) which sends the character X, E

to e(Y’, V) (resp. iz,E(Y’, V ), resp. Let oo be the

infinite place of Q. The finite place of Q determined by a rational prime’ 1
will also be denoted by I.

From the Euler product (4.1) one sees that L(Y’, = L(Y’, V,t)À
for A E Aut(C/Q). This together with (4.2) and (4.3) show

LEMMA 4.3. E(Y’) are °Q-equivariant for all places v of Q .

Recall that a representation V of G is symplectic if there is a non-

degenerate alternative bilinear form on V which is G-invariant. We now
define a counterpart of the root number class defined by Cassou-Nogu6s for
tame finite Galois extensions of number fields.

LEMMA 4.4. If V is symplectic then X, is real valued and e(Y, V) = E(Y, V)
is totally real. There is a function h~ E H omnQ (Rc,,, J(Q)) defined by

Hence the root number class p(h» is a well defined element of
Cj(Z[G]).

Proof. This follows directly from Lemma 4.3. Note that for symplectic
V, the idele with trivial finite components and component in

Q 0Q R given by the signs (= ~1) of V) at infinity.

DEFINITION 4.5. (c.f. [h4, Remark 1.3.7]) The different 6,v/), of X over Y is
the annihilator of in 0,N-. The closed subscheme BN-/),- of X defined



16

by bx/y is the branch locus of f : X H Y in X . The set b = =

is a closed subset of Y because f is finite, and will be called the
branch locus of f in Y. Let U = Ux/y be the open subset Y - of Y.

We can now state the main result of [C].

THEOREM 4.6. Let f : X ~--&#x3E; Y be a tame G-cover of projective schemes
over A = Fr relative to a divisor D on Y which has strictly normal crossings.
Suppose X is regular. Then ,

where the root number class is defined in Lemma 4.4, and the rami- ,
fication class is defined as follows. Let b = bx/y be the branch locus

Then lies in HomoQ(Ra, J(Q~), so
we may define

in Cl(Z[G]) .

The following result is Theorem 6.9 of [C].

THEOREM 4.7. The classes and lie in the Kernelgroup D(Z [G] ) .
The order of Wx/y is one or two, and is trivial if G has n o sym-
pleatic representations. The class trivial 6tale or if

dim (X) = 1.

In view of Remark 3.10, Theorems 4.6 and 4.7 establish Theorem 3.9
(the Kernel Conjecture over finite fields).

Example 4.8 Suppose f : X - Y is a tame G-cover of smooth projec-
tive irreducible curves over A = Fp. Then b C Y consists of the finitely
many closed points of Y over which f is ramified. Let V be a complex
representation of G. By equations (4.3), (4.2) and (4.1),

where is a closed point of X over y and is the inertia group of

x(y). Thus 6(6,V) is the product over y E b of the local non-
ramified characteristic of V at y defined by Fröhlich in [F, eq. (1.1), p. 149].
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In particular, since E(b, V) is a root of unity, 1,Ep(b)ll,,, is trivial. The results
of [F] on non-ramified characteristics imply lies in Det(Z~~G‘~*) C
Det(U(Z(G~~~. Thus (4.4) shows

as stated in Theorem 4.7.

Remark ,~.9 In dimensions greater than 1, RN-/-y can be non-trivial. For

example, in [C, Example 6.13] it is shown that if n &#x3E; 2 is prime, there is
a tame Kummer G-cover X - Y of projective spaces over a finite field of
characteristic p such that = Rx-/y and RN-/,., has exact
order n. 

We conclude by restating Theorems 4.6 and 4.7 for irreducible X of
dimension 1 in a way that parallels Taylor’s Theorem concerning Fr6hlich’s
conjecture for tame rings of integers.

COROLLARY 4.10. Let f : X - Y be a tame G-cover of smooth projective
irreducible curves over A Let 500 be a finite non-empty set of closed
points of Y. Let OT; ( resp. 0~~ ) be the.ring of elements of the function
field. L of X ( resp. which are regular off of Let Or;,~
( resp. ring of elements of L ( resp. Ii ) which are regular
above S,,. There is a normal basis generator {3 of Lover K such that OT
contains {3 with .finite index and 0~,oo[G’] ’ {3 contains 0 T.,oo with
finite index, where aII of these G-modules are cohomologically trivial for G.
For alI such one has

in Cl(Z[G]), where W,~-~~; is as in Lemma 4.4. There is an integer n de-
pending only on G with the following property. Suppose that the degree
over F~, of th e residue field of each p oin t of Boo is divisible by n . Then (4. 6)
can be simplified to

in Cl(Z[G]).

Proof. Combine Proposition 3.11 with Theorems 4.6 and 4.7.
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