We investigate and refine a device which we introduced in [3] for the study of continued fractions. This allows us to more easily compute the period lengths of certain continued fractions and it can be used to suggest some aspects of the cycle structure (see [1]) within the period of certain continued fractions related to underlying real quadratic fields.
@article{JTNB_1992__4_1_19_0, author = {Mollin, R. A. and Williams, H. C.}, title = {On the period length of some special continued fractions}, journal = {S\'eminaire de th\'eorie des nombres de Bordeaux}, pages = {19--42}, publisher = {Universit\'e Bordeaux I}, volume = {Ser. 2, 4}, number = {1}, year = {1992}, mrnumber = {1183916}, zbl = {0766.11003}, language = {en}, url = {http://www.numdam.org/item/JTNB_1992__4_1_19_0/} }
TY - JOUR AU - Mollin, R. A. AU - Williams, H. C. TI - On the period length of some special continued fractions JO - Séminaire de théorie des nombres de Bordeaux PY - 1992 SP - 19 EP - 42 VL - 4 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1992__4_1_19_0/ LA - en ID - JTNB_1992__4_1_19_0 ER -
Mollin, R. A.; Williams, H. C. On the period length of some special continued fractions. Séminaire de théorie des nombres de Bordeaux, Série 2, Tome 4 (1992) no. 1, pp. 19-42. http://www.numdam.org/item/JTNB_1992__4_1_19_0/
[1] Fundamental units and cycles, J. Number Theory 8 (1976), 446-491. | MR | Zbl
,[2] The Art of Computer Programing II: Seminumerical Algorithms, Addison-Wesley, 1981. | MR
,[3] Consecutive powers in continued fractions, (to appear: Acta Arithmetica). | Zbl
and ,[4] Die Lehre von den Kettenbrüchen, Chelsea, New-York (undated).
,[5] On a theorem of Heilbronn, Mathematika 22 (1975), 20-28. | MR | Zbl
,