[Estimation d’indice de sensibilité de modèles statiques et dynamiques pour des données dépendantes par la méthode d’échantillonnage Pick and Freeze ]
Cet article traite de l’estimation des indices de Sobol pour des entrées dépendantes, statiques et dynamiques. Nous proposons de transformer l’entrée dépendante en une image dont les composantes sont indépendantes. Elles ont la propriété de vérifier l’invariance des espérances conditionnelles sachant le sous espace formé des entrées et celui de leurs images, ce qui nous permet d’appliquer la méthode Pick and Freeze au modèle.
Nous traitons tout d’abord l’aspect statique, en détaillant le cas général non Gaussien et le cas Gaussien. Dans le cas non Gaussien, nous appliquons la méthode dite des quantiles conditionnels, généralement utilisée pour simuler des vecteurs aléatoires. Dans le cas Gaussien, les variables dépendantes sont séparées en deux groupes de variables indépendantes.
Concernant l’aspect dynamique, la définition des indices a été légèrement modifiée afin de prendre en compte les deux dimensions de dépendance de l’entrée, la dimension temporelle et la dimension spatiale. Pour les processus Gaussiens, nous utilisons la même méthode que dans le cas statique. Pour les processus non Gaussiens, nous proposons d’utiliser un modèle à base copule pour revenir à des entrées Gaussiennes.
L’étude de différents cas met en évidence le fait que, dans les études de sensibilité, l’utilisation de la corrélation comme mesure de dépendance a ses limites.
This article addresses the estimation of the Sobol index for dependent static and dynamic inputs. We study transformations in the input, whose image is an input with independent components. They have the basic property to give an invariance property for conditional expectation between a subset of inputs and their image that allows to use the Pick and Freeze method.
We first focus on the static case. The general case and the Gaussian case are detailed . In the non Gaussian case we apply the conditional quantile function generally used to simulate random vectors in a new framework. In the Gaussian case the dependent variables are separated into two groups of independent variables.
In the dynamic case the definition of the index has been slightly modified in order to take into account the two dimensions of dependence (temporal and spatial). For Gaussian processes the same method as previously is used. For non Gaussian processes for which in general there is no sufficient information to get a model, we propose to use a copula model to get back to Gaussian inputs. Different cases are studied in order to underline on the weakness, in sensitivity studies, to use the correlations like the measures of dependence.
Mot clés : analyse de sensibilité, entrées dépendantes, séries temporelles, modèle copule, estimation Pick and Freeze
@article{JSFS_2016__157_2_65_0, author = {Grandjacques, Mathilde and Delinchant, Benoit and Adrot, Olivier}, title = {Pick and {Freeze} estimation of sensitivity index for static and dynamic models with dependent inputs}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {65--89}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {157}, number = {2}, year = {2016}, zbl = {1367.62088}, language = {en}, url = {http://www.numdam.org/item/JSFS_2016__157_2_65_0/} }
TY - JOUR AU - Grandjacques, Mathilde AU - Delinchant, Benoit AU - Adrot, Olivier TI - Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs JO - Journal de la société française de statistique PY - 2016 SP - 65 EP - 89 VL - 157 IS - 2 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2016__157_2_65_0/ LA - en ID - JSFS_2016__157_2_65_0 ER -
%0 Journal Article %A Grandjacques, Mathilde %A Delinchant, Benoit %A Adrot, Olivier %T Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs %J Journal de la société française de statistique %D 2016 %P 65-89 %V 157 %N 2 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2016__157_2_65_0/ %G en %F JSFS_2016__157_2_65_0
Grandjacques, Mathilde; Delinchant, Benoit; Adrot, Olivier. Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs. Journal de la société française de statistique, Tome 157 (2016) no. 2, pp. 65-89. http://www.numdam.org/item/JSFS_2016__157_2_65_0/
[1] Multivariate input processes, Handbooks in Operations Research and Management Science, Volume 13 (2006), pp. 123-153
[2] Modeling and generating multivariate time-series input processes using a vector autoregressive technique, ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 13 (2003) no. 3, pp. 211-237 | Zbl
[3] Fitting time-series input processes for simulation, Operations Research, Volume 53 (2005) no. 3, pp. 549-559 | Zbl
[4] Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory, J. Chemical Physics , Volume 59 (1973), pp. 3873-3878
[5] Generalized Hoeffding-Sobol Decomposition for Dependent Variables-Application to Sensitivity Analysis, Arxiv preprint arXiv:1112.1788 (2011) | Zbl
[6] Indices de Sobol généralisés pour variables dépendantes, Université de Grenoble (2013) (Ph. D. Thesis)
[7] ANOVA decomposition of conditional Gaussian processes for sensitivity analysis with dependent inputs, Journal of Statistical Computation and Simulation, Volume 85 (2015) no. 11, pp. 2164-2186 | Zbl
[8] Autoregressive to anything: Time-series input processes for simulation, Operations Research Letters, Volume 19 (1996) no. 2, pp. 51-58 | Zbl
[9] Local polynomial estimation for sensitivity analysis on models with correlated inputs, Technometrics, Volume 51 (2009) no. 4, pp. 452-463
[10] Behavior of the NORTA method for correlated random vector generation as the dimension increases, ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 13 (2003) no. 3, pp. 276-294 | Zbl
[11] Corrigendum: Behavior of the NORTA method for correlated random vector generation as the dimension increases, ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 16 (2006) no. 1, pp. 93-94 | Zbl
[12] Pick and freeze estimation of sensitivity indices for models with dependent and dynamic input processes, hal preprint (2015)
[13] Statistical inference for Sobol pick freeze Monte Carlo method, arXiv preprint arXiv:1303.6447 (2013) | Zbl
[14] Generalized functional anova diagnostics for high-dimensional functions of dependent variables, Journal of Computational and Graphical Statistics, Volume 16 (2007) no. 3
[15] An efficient hardware implementation for a reciprocal unit, Electronic Design, Test and Application, 2010. DELTA’10. Fifth IEEE International Symposium on, IEEE (2010), pp. 183-187
[16] Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics (2013) | Zbl
[17] Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, Volume 18 (2014), pp. 342-364 | Zbl
[18] Bivariate distributions based on simple translation systems, Biometrika (1949), pp. 297-304 | Zbl
[19] Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, Volume 183 (2012) no. 4, pp. 937-946 | Zbl
[20] Estimating mean dimensionality of analysis of variance decompositions, Journal of the American Statistical Association, Volume 101 (2006) no. 474, pp. 712-721 | Zbl
[21] Extension of the rbd-fast method to the computation of global sensitivity indices, Reliability Engineering and System Safety , Volume 94 (2009), pp. 1274-1281
[22] Variance-based sensitivity indices for models with dependent inputs, Reliability Engineering & System Safety, Volume 107 (2012), pp. 115-121
[23] An introduction to copulas, 139, Springer Science & Business Media, 2013 | Zbl
[24] Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics (1956), pp. 832-837 | Zbl
[25] Sensitivity analysis, 1, Wiley New York, 2000 | Zbl
[26] Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture, The Annals of Statistics, Volume 25 (1997) no. 4, pp. 1371-1470 | Zbl
[27] Fonctions de répartition à n dimensions et leurs marges, Université Paris 8, 1959 | Zbl
[28] Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and computers in simulation, Volume 55 (2001) no. 1-3, pp. 271-280 | Zbl
[29] Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Experiment, Volume 1 (1993) no. 4, p. 407-414 (1995) | MR | Zbl
[30] Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering and System Safety , Volume 93 (2008), pp. 964-979
[31] Random balance designs for the estimation of first order global sensitivity indices, Reliability Engineering & System Safety, Volume 91 (2006) no. 6, pp. 717-727
[32] Reliability of global sensitivity indices, Journal of Statistical Computation and Simulation, Volume 81 (2011) no. 12, pp. 1939-1969 | Zbl