Numéro spécial : Special Issue on Statistics and Neurosciences
Bivariate spatial point patterns in the retina: a reproducible review
[Modèles de processus ponctuels spatiaux bidimensionnels pour la rétine : une revue reproductible]
Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 33-48.

Cette revue présente des résultats récents sur la position de neurones de différents types tout en mettant en application les principes de la « recherche reproductible ». Une attention particulière est portée aux positions relatives de différents types cellulaires de la rétine. Trois hypothèses explicatives de l’agencement de deux types de neurones sont considérées : les cellules des différents types sont positionnées indépendamment les unes des autres ; les cellules d’un seul type se voient affectées aléatoirement deux labels différents créant ainsi deux populations liées ; des interactions entre les cellules de différents types génèrent les dépendances spatiales. L’application des techniques de statistique spatiale à l’étude de ces trois hypothèses est brièvement exposée. Ce travail est de surcroît un exemple de « recherche reproductible »car l’ensemble des programmes (informatiques) ainsi que l’ensemble des données sont intégrés au manuscrit ce qui permet à tout lecteur de reproduire l’analyse proposée. La revue se conclut par une discussion du concept de « recherche reproductible ».

In this article I present a reproducible review of recent research to investigate the spatial positioning of neurons in the nervous system. In particular, I focus on the relative spatial positioning of pairs of cell types within the retina. I examine three different cases by which two types of neurons might be arranged relative to each other. (1) Cells of different type might be effectively independent of each other. (2) Cells of one type are randomly assigned one of two labels to create two related populations. (3) Interactions between cells of different type generate functional dependencies. I show briefly how spatial statistic techniques can be applied to investigate the nature of spatial interactions between two cell types. Finally, I have termed this article a ‘reproducible review’ because all the data and computer code are integrated into the manuscript so that others can repeat the analysis presented here. I close the review with a discussion of this concept.

Keywords: retinal mosaics, spatial statistics, reproducible research, mathematical modelling, computational neuroscience
Mot clés : mosaïque rétinienne, statistique spatiale, recherche reproductible, modélisation mathématique, neurosciences computationnelles
@article{JSFS_2016__157_1_33_0,
     author = {Eglen, Stephen J.},
     title = {Bivariate spatial point patterns in the retina: a reproducible review},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {33--48},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {157},
     number = {1},
     year = {2016},
     mrnumber = {3491722},
     zbl = {1360.92024},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2016__157_1_33_0/}
}
TY  - JOUR
AU  - Eglen, Stephen J.
TI  - Bivariate spatial point patterns in the retina: a reproducible review
JO  - Journal de la société française de statistique
PY  - 2016
SP  - 33
EP  - 48
VL  - 157
IS  - 1
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2016__157_1_33_0/
LA  - en
ID  - JSFS_2016__157_1_33_0
ER  - 
%0 Journal Article
%A Eglen, Stephen J.
%T Bivariate spatial point patterns in the retina: a reproducible review
%J Journal de la société française de statistique
%D 2016
%P 33-48
%V 157
%N 1
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2016__157_1_33_0/
%G en
%F JSFS_2016__157_1_33_0
Eglen, Stephen J. Bivariate spatial point patterns in the retina: a reproducible review. Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 33-48. http://www.numdam.org/item/JSFS_2016__157_1_33_0/

[1] Ahnelt, P K; Fernández, E; Martinez, O; Bolea, J A; Kübber-Heiss, A Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation, J. Opt. Soc. Am. A Opt. Image Sci. Vis., Volume 17 (2000) no. 3, pp. 580-588

[2] Ascoli, Giorgio A A community spring for neuroscience data sharing, Neuroinformatics, Volume 12 (2014) no. 4, pp. 509-511

[3] Bell, Melanie L; Earl, James B; Britt, Steven G Two types of Drosophila R7 photoreceptor cells are arranged randomly: a model for stochastic cell-fate determination, J. Comp. Neurol., Volume 502 (2007) no. 1, pp. 75-85

[4] Boettiger, Carl An introduction to Docker for reproducible research, with examples from the R environment, arXiv, Volume 1410.0846 (2014)

[5] Cotter, David; Mackay, Daniel; Chana, Gursh; Beasley, Clare; Landau, Sabine; Everall, Ian P Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder, Cereb. Cortex, Volume 12 (2002) no. 4, pp. 386-394

[6] Cook, Jeremy E Spatial regularity among retinal neurons, The Visual Neurosciences (2003), pp. 463-477

[7] Cook, J E Spatial properties of retinal mosaics: an empirical evaluation of some existing measures, Vis. Neurosci., Volume 13 (1996) no. 1, pp. 15-30

[8] Diggle, P. J.; Eglen, Stephen J.; Troy, John B. Modelling the Bivariate Spatial Distribution of Amacrine Cells, Case Studies in Spatial Point Process Modelling (Baddeley, A.; Gregori, P.; Mateu, J.; Stoica, R.; Stoyan, D., eds.) (Lecture notes in Statistics 185), Springer, 2006, pp. 215-233 | MR | Zbl

[9] Delescluse, Matthieu; Franconville, Romain; Joucla, Sébastien; Lieury, Tiffany; Pouzat, Christophe Making neurophysiological data analysis reproducible: why and how?, J. Physiol. Paris, Volume 106 (2011) no. 3-4, pp. 159-170

[10] Diggle, P. J. Statistical analysis of spatial point patterns, London: Edward Arnold, 2002 | Zbl

[11] Diggle, P J Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern, J. Neurosci. Methods, Volume 18 (1986) no. 1-2, pp. 115-125

[12] ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome, Nature, Volume 489 (2012) no. 7414, pp. 57-74

[13] Eglen, Stephen J; Diggle, Peter J; Troy, John B Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells, Vis. Neurosci., Volume 22 (2006) no. 6, pp. 859-871

[14] Eglen, Stephen J. Cellular Spacing: Analysis and Modelling of Retinal Mosaics, Computational Systems Neurobiology (Le Novère, N, ed.), Springer Netherlands, 2012, pp. 365-385

[15] Eglen, Stephen J; Raven, Mary A; Tamrazian, Eric; Reese, Benjamin E Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic, J. Comp. Neurol., Volume 466 (2003) no. 3, pp. 343-355

[16] Eglen, S J; van Ooyen, A; Willshaw, D J Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics, Network, Volume 11 (2000) no. 1, pp. 103-118 | Zbl

[17] Eglen, Stephen J; Willshaw, David J Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study, Development, Volume 129 (2002) no. 23, pp. 5399-5408

[18] Gentleman, Robert C; Carey, Vincent J; Bates, Douglas M; Bolstad, Ben; Dettling, Marcel; Dudoit, Sandrine; Ellis, Byron; Gautier, Laurent; Ge, Yongchao; Gentry, Jeff; Hornik, Kurt; Hothorn, Torsten; Huber, Wolfgang; Iacus, Stefano; Irizarry, Rafael; Leisch, Friedrich; Li, Cheng; Maechler, Martin; Rossini, Anthony J; Sawitzki, Gunther; Smith, Colin; Smyth, Gordon; Tierney, Luke; Yang, Jean Y H; Zhang, Jianhua Bioconductor: open software development for computational biology and bioinformatics, Genome Biol., Volume 5 (2004) no. 10 | DOI

[19] Gangarossa, Giuseppe; Espallergues, Julie; Mailly, Philippe; De Bundel, Dimitri; de Kerchove d’Exaerde, Alban; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel; Krieger, Patrik Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum, Front. Neural Circuits, Volume 7 (2013) | DOI

[20] Hore, Victoria R A; Troy, John B; Eglen, Stephen J Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex, Vis. Neurosci., Volume 29 (2012) no. 6, pp. 283-299

[21] Jeyarasasingam, G; Snider, C J; Ratto, G M; Chalupa, L M Activity-regulated cell death contributes to the formation of ON and OFF alpha ganglion cell mosaics, J. Comp. Neurol., Volume 394 (1998) no. 3, pp. 335-343

[22] Kouyama, N; Marshak, D W Bipolar cells specific for blue cones in the macaque retina, J. Neurosci., Volume 12 (1992) no. 4, pp. 1233-1252

[23] Kouyama, N; Marshak, D W The topographical relationship between two neuronal mosaics in the short wavelength-sensitive system of the primate retina, Vis. Neurosci., Volume 14 (1997) no. 1, pp. 159-167

[24] Kram, Yoseph A; Mantey, Stephanie; Corbo, Joseph C Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics, PLoS One, Volume 5 (2010) no. 2

[25] Keeley, Patrick W; Reese, Benjamin E The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage, Front. Neuroanat., Volume 8 (2014) | DOI

[26] Lønborg, Andreas Vejen A mechanistic model of the interactoin between blue cones and blue cone bipolar cells in Macaque retina., University of Cambridge (2008) (Masters thesis)

[27] Mack, A F Evidence for a columnar organization of cones, Müller cells, and neurons in the retina of a cichlid fish, Neuroscience, Volume 144 (2007) no. 3, pp. 1004-1014

[28] Masland, Richard H The neuronal organization of the retina, Neuron, Volume 76 (2012) no. 2, pp. 266-280

[29] Peng, Roger D Reproducible research and Biostatistics, Biostatistics, Volume 10 (2009) no. 3, pp. 405-408

[30] Peng, Roger D Reproducible research in computational science, Science, Volume 334 (2011) no. 6060, pp. 1226-1227

[31] Prodanov, Dimiter; Nagelkerke, Nico; Marani, Enrico Spatial clustering analysis in neuroanatomy: applications of different approaches to motor nerve fiber distribution, J. Neurosci. Methods, Volume 160 (2007) no. 1, pp. 93-108

[32] Ruggiero, Carmelina; Benvenuti, Simona; Giacomini, Mauro Mathematical modeling of retinal mosaic formation by mechanical interactions and dendritic overlap, IEEE Trans. Nanobioscience, Volume 6 (2007) no. 2, pp. 180-185

[33] Rockhill, R. L.; Euler, T.; Masland, R. H. Spatial order within but not between types of retinal neurons, Proc. Natl. Acad. Sci. U. S. A., Volume 97 (2000) no. 5, pp. 2303-2307

[34] Reese, Benjamin E; Galli-Resta, Lucia The role of tangential dispersion in retinal mosaic formation, Prog. Retin. Eye Res., Volume 21 (2002) no. 2, pp. 153-168

[35] Ripley, B D The second-order analysis of stationary point processes, J. Appl. Probab., Volume 13 (1976), pp. 255-266 | MR | Zbl

[36] Ripley, B D Modelling Spatial Patterns, J. R. Stat. Soc. Series B Stat. Methodol., Volume 39 (1977) no. 2, pp. 172-212 | MR | Zbl

[37] Resta, Valentina; Novelli, Elena; Di Virgilio, Francesco; Galli-Resta, Lucia Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control, Development, Volume 132 (2005) no. 12, pp. 2873-2882

[38] Reese, B E; Necessary, B D; Tam, P P; Faulkner-Jones, B; Tan, S S Clonal expansion and cell dispersion in the developing mouse retina, Eur. J. Neurosci., Volume 11 (1999) no. 8, pp. 2965-2978

[39] Rodieck, R W The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies, Vis. Neurosci., Volume 6 (1991) no. 2, pp. 95-111

[40] Seung, H Sebastian; Sümbül, Uygar Neuronal cell types and connectivity: lessons from the retina, Neuron, Volume 83 (2014) no. 6, pp. 1262-1272

[41] Sümbül, Uygar; Song, Sen; McCulloch, Kyle; Becker, Michael; Lin, Bin; Sanes, Joshua R; Masland, Richard H; Seung, H Sebastian A genetic and computational approach to structurally classify neuronal types, Nat. Commun., Volume 5 (2014) | DOI

[42] Tippmann, Sylvia Programming tools: Adventures with R, Nature, Volume 517 (2015) no. 7532, pp. 109-110

[43] Takesue, A; Mochizuki, A; Iwasa, Y Cell-differentiation rules that generate regular mosaic patterns: modelling motivated by cone mosaic formation in fish retina, J. Theor. Biol., Volume 194 (1998) no. 4, pp. 575-586

[44] Vogels, T P; Sprekeler, H; Zenke, F; Clopath, C; Gerstner, W Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks, Science, Volume 334 (2011) no. 6062, pp. 1569-1573

[45] Wässle, H; Boycott, B B; Illing, R B Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations, Proc. R. Soc. Lond. B Biol. Sci., Volume 212 (1981) no. 1187, pp. 177-195

[46] Wässle, H; Riemann, H J The mosaic of nerve cells in the mammalian retina, Proc. R. Soc. Lond. B Biol. Sci., Volume 200 (1978) no. 1141, pp. 441-461

[47] Wässle, Heinz Parallel processing in the mammalian retina, Nat. Rev. Neurosci., Volume 5 (2004) no. 10, pp. 747-757

[48] Xie, Y Dynamic Documents with R and knitr, Chapman & Hall/CRC The R Series, Taylor & Francis, Boca Raton, Florida, 2013