Dans les modèles de ruptures multiples la recherche des segmentations de coût minimal, au sens d’une certaine fonction de perte, avec une à
A common computational problem in multiple change-point models is to recover the segmentations with
Mot clés : détection de ruptures multiples, programmation dynamique, coût fonctionnel
@article{JSFS_2015__156_4_180_0, author = {Rigaill, Guillem}, title = {A pruned dynamic programming algorithm to recover the best segmentations with $1$ to $K_{max}$ change-points}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {180--205}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {156}, number = {4}, year = {2015}, mrnumber = {3436653}, zbl = {1381.90094}, language = {en}, url = {https://www.numdam.org/item/JSFS_2015__156_4_180_0/} }
TY - JOUR AU - Rigaill, Guillem TI - A pruned dynamic programming algorithm to recover the best segmentations with $1$ to $K_{max}$ change-points JO - Journal de la société française de statistique PY - 2015 SP - 180 EP - 205 VL - 156 IS - 4 PB - Société française de statistique UR - https://www.numdam.org/item/JSFS_2015__156_4_180_0/ LA - en ID - JSFS_2015__156_4_180_0 ER -
%0 Journal Article %A Rigaill, Guillem %T A pruned dynamic programming algorithm to recover the best segmentations with $1$ to $K_{max}$ change-points %J Journal de la société française de statistique %D 2015 %P 180-205 %V 156 %N 4 %I Société française de statistique %U https://www.numdam.org/item/JSFS_2015__156_4_180_0/ %G en %F JSFS_2015__156_4_180_0
Rigaill, Guillem. A pruned dynamic programming algorithm to recover the best segmentations with $1$ to $K_{max}$ change-points. Journal de la société française de statistique, Tome 156 (2015) no. 4, pp. 180-205. https://www.numdam.org/item/JSFS_2015__156_4_180_0/
[1] Kernel change-point detection, arXiv preprint arXiv:1202.3878 (2012)
[2] Algorithms for the optimal identification of segment neighborhoods, Bulletin of mathematical biology, Volume 51 (1989) no. 1, pp. 39-54 | MR | Zbl
[3] On the approximation of curves by line segments using dynamic programming, Communications of the ACM, Volume 4 (1961) no. 6, pp. 284-286 | Zbl
[4] Computation and analysis of multiple structural change models, Journal of Applied Econometrics, Volume 18 (2003) no. 1, pp. 1-22 http://econpapers.repec.org/article/jaejapmet/v_3a18_3ay_3a2003_3ai_3a1_3ap_3a1-22.htm | DOI
[5] Segmentor3IsBack: an R package for the fast and exact segmentation of Seq-data., Algorithms for Molecular Biology, Volume 9 (2014) | DOI
[6] Segmentation of the Poisson and negative binomial rate models: a penalized estimator, ESAIM, P&S, Volume 18 (2014), pp. 750-769 | MR | Zbl
[7] On grouping for maximum homogeneity, Journal of the American Statistical Association, Volume 53 (1958) no. 284, pp. 789-798 | MR | Zbl
[8] Using CART to Detect Multiple Change Points in the Mean for Large Sample, SSB preprint (2008)
[9] Exploring the segmentation space for the assessment of multiple change-point models, hal.inria.fr pre-print inria-00311634 (2008) | Zbl
[10] Multiple change-point estimation with a total variation penalty, Journal of the American Statistical Association, Volume 105 (2010) no. 492 | MR | Zbl
[11] Comparing least squares segmentation code, available at http://sugiyama-www.cs.titech.ac.jp/ toby/org/HOCKING-ml-seg-compare.pdf (2013)
[12] Learning smoothing models of copy number profiles using breakpoint annotations, BMC Bioinformatics, Volume 14 (2013) no. 1 | DOI
[13] An algorithm for optimal partitioning of data on an interval, Signal Processing Letters, IEEE, Volume 12 (2005) no. 2, pp. 105-108
[14] Reduced-search dynamic programming for approximation of polygonal curves, Pattern Recognition Letters, Volume 24 (2003) no. 14, pp. 2243-2254 | Zbl
[15] Optimal detection of changepoints with a linear computational cost, Journal of the American Statistical Association, Volume 107 (2012) no. 500, pp. 1590-1598 | MR | Zbl
[16] Using penalized contrasts for the change-point problem, Signal Processing, Volume 85 (2005) no. 8, pp. 1501-1510 | Zbl
[17] Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data, Bioinformatics, Volume 21 (2005) no. 19, pp. 3763-3770
[18] On optimal multiple changepoint algorithms for large data, arXiv preprint arXiv:1409.1842 (2014) | MR | Zbl
[19] A statistical approach for array CGH data analysis, BMC Bioinformatics, Volume 6 (2005) no. 1 | DOI
[20] Pruned dynamic programming for optimal multiple change-point detection, arXiv preprint arXiv:1004.0887 (2010)
[21] A cluster analysis method for grouping means in the analysis of variance, Biometrics, Volume 30 (1974) no. 3, pp. 507-512 | Zbl