Cet article est une synthèse bibliographique des méthodes d’estimation de quantiles extrêmes pour les lois à queue de type Weibull. Ces lois ont une fonction de survie qui décroit vers zéro à une vitesse exponentielle. Nous montrons comment cette problématique s’inscrit plus largement dans la théorie des valeurs extrêmes.
In this paper, an overview on extreme quantiles estimation for Weibull-tail distribution is provided. Recall that the survival function of a Weibull-tail distribution decreases exponentially fast. We show how this problem can be inserted in the more general setting of extreme value theory.
Keywords: Weibull-tail distributions, Overview
@article{JSFS_2013__154_2_98_0, author = {Gardes, Laurent and Girard, St\'ephane}, title = {Estimation de quantiles extr\^emes pour les lois \`a queue de type {Weibull~:} une synth\`ese bibliographique}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {98--118}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {154}, number = {2}, year = {2013}, mrnumber = {3120438}, zbl = {1316.62064}, language = {fr}, url = {http://www.numdam.org/item/JSFS_2013__154_2_98_0/} }
TY - JOUR AU - Gardes, Laurent AU - Girard, Stéphane TI - Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique JO - Journal de la société française de statistique PY - 2013 SP - 98 EP - 118 VL - 154 IS - 2 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2013__154_2_98_0/ LA - fr ID - JSFS_2013__154_2_98_0 ER -
%0 Journal Article %A Gardes, Laurent %A Girard, Stéphane %T Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique %J Journal de la société française de statistique %D 2013 %P 98-118 %V 154 %N 2 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2013__154_2_98_0/ %G fr %F JSFS_2013__154_2_98_0
Gardes, Laurent; Girard, Stéphane. Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique. Journal de la société française de statistique, Tome 154 (2013) no. 2, pp. 98-118. http://www.numdam.org/item/JSFS_2013__154_2_98_0/
[1] Pitfalls in using Weibull tailed distributions, Journal of Statistical Planning and Inference, Volume 140 (2010), pp. 2018-2024 | MR | Zbl
[2] The mean residual life function at great age : applications to tail estimation, Journal of Statistical Planning and Inference, Volume 45 (1995), pp. 21-48 | MR | Zbl
[3] Semiparametric lower bounds for tail index estimation, Journal of Statistical Planning and Inference, Volume 136 (2006), pp. 705-729 | MR | Zbl
[4] Tail index estimation and an exponential regression model, Extremes, Volume 2 (1999), pp. 177-200 | MR | Zbl
[5] On exponential representations of log-spacings of extreme order statistics, Extremes, Volume 5 (2002), pp. 157-180 | MR | Zbl
[6] Record values and the estimation of the Weibull tail-coefficient, Comptes-Rendus de l’Académie des Sciences, Volume T. 312, Série I (1991), pp. 943-946 | MR | Zbl
[7] Regular Variation, Cambridge University Press, 1987 | MR | Zbl
[8] Univariate and Bivariate GPD Methods for Predicting Extreme Wind Storm Losses, Insurance : Mathematics and Economics, Volume 44 (2009), pp. 345-356 | MR | Zbl
[9] On the estimation of the Weibull tail coefficient, Journal of Statistical Planning and Inference, Volume 35 (1993), pp. 349-366 | MR | Zbl
[10] Modelling large claims in non-life insurance, Insurance : Mathematics and Economics, Volume 11 (1992), pp. 17-29 | MR | Zbl
[11] Practical analysis of extreme values, Leuven University Press, Leuven, Belgium, 1996 | Zbl
[12] Kernel estimates of the tail index of a distribution, The Annals of Statistics, Volume 13 (1985), pp. 1050-1077 | MR | Zbl
[13] Estimating the tail index, Asymptotic Methods in Probability and Statistics (Szyszkowicz, B., ed.), TEST, North-Holland, Amsterdam, 1998, pp. 833-881 | MR | Zbl
[14] A new estimation method for Weibull-type tails based on the mean excess function, Journal of Statistical Planning and Inference, Volume 139(6) (2009), pp. 1905-1920 | MR | Zbl
[15] Bias-reduced estimators of the Weibull tail-coefficient, Test, Volume 17 (2008), pp. 311-331 | MR | Zbl
[16] Bias-reduced extreme quantiles estimators of Weibull tail-distributions, Journal of Statistical Planning and Inference, Volume 138 (2008), pp. 1389-1401 | MR | Zbl
[17] Extreme value theory : an introduction, Springer, 2006 | MR | Zbl
[18] Distribution arbitrariness in structural reliability, Structural Safety and Reliability (Balkema, ed.), TEST, Rotterdam, 1998, pp. 1241-1247
[19] Selecting the optimal sample fraction in univariate extreme value estimation, Stochastic process and Application, Volume 75 (1998), pp. 149-172 | MR | Zbl
[20] Modelling extremal events, Springer, 1997 | MR
[21] Some best parameter estimates for distributions with finite endpoint, Statistics, Volume 27 (1995), pp. 115-125 | MR | Zbl
[22] Estimating a Tail Exponent by Modelling Departure from a Pareto Distribution, The Annals of Statistics, Volume 27 (1999), pp. 760-781 | MR | Zbl
[23] Efficient estimation of the shape parameter in Pareto models with partially known scale, Statistics & Decisions, Volume 15 (1997), pp. 229-239 | MR | Zbl
[24] Generalized kernel estimators for the Weibull-tail coefficient, Communications in Statistics - Theory and Methods, Volume 39 (2010) no. 20, pp. 3695-3716 | MR | Zbl
[25] Estimating extreme quantiles of Weibull tail-distributions, Communication in Statistics - Theory and Methods, Volume 34 (2005), pp. 1065-1080 | MR | Zbl
[26] Comparison of Weibull tail-coefficient estimators, REVSTAT - Statistical Journal, Volume 4(2) (2006), pp. 163-188 | MR | Zbl
[27] Estimation of the Weibull tail-coefficient with linear combination of upper order statistics, Journal of Statistical Planning and Inference, Volume 138 (2008), pp. 1416-1427 | MR | Zbl
[28] Goodness-of-fit testing for Weibull-type behavior, Journal of Statistical Planning and Inference, Volume 140(6) (2010), pp. 1417-1436 | MR | Zbl
[29] Weibull tail-distributions revisited : a new look at some tail estimators, Journal of Statistical Planning and Inference, Volume 141 (2011) no. 1, pp. 429-444 | MR | Zbl
[30] Estimating an endpoint with high order moments in the Weibull domain of attraction, Statistics and Probability Letters, Volume 82 (2012), pp. 2136-2144 | MR
[31] Regular variation, extensions and Tauberian theorems, Center for Mathematics and Computer Science, Amsterdam, Netherlands, 1987 | MR | Zbl
[32] A Hill type estimate of the Weibull tail-coefficient, Communication in Statistics - Theory and Methods, Volume 33(2) (2004), pp. 205-234 | MR | Zbl
[33] Improving second order reduced bias extreme value index estimation, REVSTAT - Statistical Journal, Volume 5(2) (2007), pp. 177-207 | MR | Zbl
[34] Sur la distribution limite du terme maximum d’une série aléatoire, The Annals of Mathematics, Volume 44 (1943), pp. 423-453 | MR | Zbl
[35] Asymptotic unbiased estimators of the tail index based on external estimation of the second order parameter, Extremes, Volume 5(1) (2002), pp. 5-31 | MR | Zbl
[36] A simple general approach to inference about the tail of a distribution, The Annals of Statistics, Volume 3 (1975), pp. 1163-1174 | MR | Zbl
[37] New methods for bias correction at endpoints and boundaries, The Annals of Statistics, Volume 30(5) (2002), pp. 1460-1479 | MR | Zbl
[38] The QQ-estimator and heavy tails, Stochastic Models, Volume 12 (1996), pp. 699-724 | MR | Zbl
[39] Optimal spatial adaption to inhomogeneous smoothness : an approach based on kernel estimates with variable bandwidth selectors, The Annals of Statistics, Volume 25 (1997), pp. 929-947 | MR | Zbl
[40] Asymptotic normality of linear combinations of order statistics with a smooth score function, The Annals of Statistics, Volume 9(4) (1981), pp. 899-908 | MR | Zbl
[41] Estimation of extreme quantiles from heavy and light tailed distributions, Journal of Statistical Planning and Inference, Volume 142 (2012) no. 10, pp. 2735-2747 | MR | Zbl
[42] Optimal rates of convergence in the Weibull model based on kernel-type estimators, Statistics and Probability Letters, Volume 82 (2011), pp. 548-556 | MR | Zbl
[43] Estimating the first and second order parameters of a heavy tailed distribution, Australian and New Zealand Journal of Statistics, Volume 46(2) (2004), pp. 305-312 | MR | Zbl
[44] Extreme values, regular variation and point processes, Springer Series in Operations Research and Financial Engineering, 1987 | MR | Zbl
[45] Can losses caused by wind storms be predicted from meteorological observations ?, Scandinavian Actuarial Journal, Volume 5 (2001), pp. 162-175 | MR | Zbl
[46] On least squares estimates of an exponential tail coefficient, Statistics and Decisions, Volume 14 (1996), pp. 353-372 | MR | Zbl
[47] Estimation of parameters and large quantiles based on the largest observations, Journal of the American Statistical Association, Volume 73 (1978), pp. 812-815 | MR | Zbl