Numéro spécial : statistique des valeurs extrêmes
Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique
Journal de la société française de statistique, Tome 154 (2013) no. 2, pp. 98-118.

Cet article est une synthèse bibliographique des méthodes d’estimation de quantiles extrêmes pour les lois à queue de type Weibull. Ces lois ont une fonction de survie qui décroit vers zéro à une vitesse exponentielle. Nous montrons comment cette problématique s’inscrit plus largement dans la théorie des valeurs extrêmes.

In this paper, an overview on extreme quantiles estimation for Weibull-tail distribution is provided. Recall that the survival function of a Weibull-tail distribution decreases exponentially fast. We show how this problem can be inserted in the more general setting of extreme value theory.

Mot clés : Lois à queue de type Weibull, Synthèse bibliographique
Keywords: Weibull-tail distributions, Overview
@article{JSFS_2013__154_2_98_0,
     author = {Gardes, Laurent and Girard, St\'ephane},
     title = {Estimation de quantiles extr\^emes pour les lois \`a queue de type {Weibull~:} une synth\`ese bibliographique},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {98--118},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {154},
     number = {2},
     year = {2013},
     mrnumber = {3120438},
     zbl = {1316.62064},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2013__154_2_98_0/}
}
TY  - JOUR
AU  - Gardes, Laurent
AU  - Girard, Stéphane
TI  - Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique
JO  - Journal de la société française de statistique
PY  - 2013
SP  - 98
EP  - 118
VL  - 154
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2013__154_2_98_0/
LA  - fr
ID  - JSFS_2013__154_2_98_0
ER  - 
%0 Journal Article
%A Gardes, Laurent
%A Girard, Stéphane
%T Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique
%J Journal de la société française de statistique
%D 2013
%P 98-118
%V 154
%N 2
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2013__154_2_98_0/
%G fr
%F JSFS_2013__154_2_98_0
Gardes, Laurent; Girard, Stéphane. Estimation de quantiles extrêmes pour les lois à queue de type Weibull : une synthèse bibliographique. Journal de la société française de statistique, Tome 154 (2013) no. 2, pp. 98-118. http://www.numdam.org/item/JSFS_2013__154_2_98_0/

[1] Asimit, V.; Li, D.; Peng, L. Pitfalls in using Weibull tailed distributions, Journal of Statistical Planning and Inference, Volume 140 (2010), pp. 2018-2024 | MR | Zbl

[2] Beirlant, J.; Broniatowski, M.; Teugels, J.L.; Vynckier, P. The mean residual life function at great age : applications to tail estimation, Journal of Statistical Planning and Inference, Volume 45 (1995), pp. 21-48 | MR | Zbl

[3] Beirlant, J.; Bouquiaux, C.; Werker, B. Semiparametric lower bounds for tail index estimation, Journal of Statistical Planning and Inference, Volume 136 (2006), pp. 705-729 | MR | Zbl

[4] Beirlant, J.; Dierckx, G.; Goegebeur, Y.; Matthys, G. Tail index estimation and an exponential regression model, Extremes, Volume 2 (1999), pp. 177-200 | MR | Zbl

[5] Beirlant, J.; Dierckx, G.; Guillou, A.; Stǎricǎ, C. On exponential representations of log-spacings of extreme order statistics, Extremes, Volume 5 (2002), pp. 157-180 | MR | Zbl

[6] Berred, M. Record values and the estimation of the Weibull tail-coefficient, Comptes-Rendus de l’Académie des Sciences, Volume T. 312, Série I (1991), pp. 943-946 | MR | Zbl

[7] Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation, Cambridge University Press, 1987 | MR | Zbl

[8] Brodin, E.; Rootzén, H. Univariate and Bivariate GPD Methods for Predicting Extreme Wind Storm Losses, Insurance : Mathematics and Economics, Volume 44 (2009), pp. 345-356 | MR | Zbl

[9] Broniatowski, M. On the estimation of the Weibull tail coefficient, Journal of Statistical Planning and Inference, Volume 35 (1993), pp. 349-366 | MR | Zbl

[10] Beirlant, J.; Teugels, J.L. Modelling large claims in non-life insurance, Insurance : Mathematics and Economics, Volume 11 (1992), pp. 17-29 | MR | Zbl

[11] Beirlant, J.; Teugels, J.L.; Vynckier, P. Practical analysis of extreme values, Leuven University Press, Leuven, Belgium, 1996 | Zbl

[12] Csörgő, S.; Deheuvels, P.; Mason, D.M. Kernel estimates of the tail index of a distribution, The Annals of Statistics, Volume 13 (1985), pp. 1050-1077 | MR | Zbl

[13] Csörgő, S.; Viharos, L. Estimating the tail index, Asymptotic Methods in Probability and Statistics (Szyszkowicz, B., ed.), TEST, North-Holland, Amsterdam, 1998, pp. 833-881 | MR | Zbl

[14] Dierckx, G.; Beirlant, J.; Waal, D. De; Guillou, A. A new estimation method for Weibull-type tails based on the mean excess function, Journal of Statistical Planning and Inference, Volume 139(6) (2009), pp. 1905-1920 | MR | Zbl

[15] Diebolt, J.; Gardes, L.; Girard, S.; Guillou, A. Bias-reduced estimators of the Weibull tail-coefficient, Test, Volume 17 (2008), pp. 311-331 | MR | Zbl

[16] Diebolt, J.; Gardes, L.; Girard, S.; Guillou, A. Bias-reduced extreme quantiles estimators of Weibull tail-distributions, Journal of Statistical Planning and Inference, Volume 138 (2008), pp. 1389-1401 | MR | Zbl

[17] de Haan, L.; Ferreira, A. Extreme value theory : an introduction, Springer, 2006 | MR | Zbl

[18] Ditlevsen, O. Distribution arbitrariness in structural reliability, Structural Safety and Reliability (Balkema, ed.), TEST, Rotterdam, 1998, pp. 1241-1247

[19] Drees, H.; Kaufmann, E. Selecting the optimal sample fraction in univariate extreme value estimation, Stochastic process and Application, Volume 75 (1998), pp. 149-172 | MR | Zbl

[20] Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling extremal events, Springer, 1997 | MR

[21] Falk, M. Some best parameter estimates for distributions with finite endpoint, Statistics, Volume 27 (1995), pp. 115-125 | MR | Zbl

[22] Feuerverger, A.; Hall, P. Estimating a Tail Exponent by Modelling Departure from a Pareto Distribution, The Annals of Statistics, Volume 27 (1999), pp. 760-781 | MR | Zbl

[23] Falk, M.; Marohn, F. Efficient estimation of the shape parameter in Pareto models with partially known scale, Statistics & Decisions, Volume 15 (1997), pp. 229-239 | MR | Zbl

[24] Goegebeur, Y.; Beirlant, J.; de Wet, T. Generalized kernel estimators for the Weibull-tail coefficient, Communications in Statistics - Theory and Methods, Volume 39 (2010) no. 20, pp. 3695-3716 | MR | Zbl

[25] Gardes, L.; Girard, S. Estimating extreme quantiles of Weibull tail-distributions, Communication in Statistics - Theory and Methods, Volume 34 (2005), pp. 1065-1080 | MR | Zbl

[26] Gardes, L.; Girard, S. Comparison of Weibull tail-coefficient estimators, REVSTAT - Statistical Journal, Volume 4(2) (2006), pp. 163-188 | MR | Zbl

[27] Gardes, L.; Girard, S. Estimation of the Weibull tail-coefficient with linear combination of upper order statistics, Journal of Statistical Planning and Inference, Volume 138 (2008), pp. 1416-1427 | MR | Zbl

[28] Goegebeur, Y.; Guillou, A. Goodness-of-fit testing for Weibull-type behavior, Journal of Statistical Planning and Inference, Volume 140(6) (2010), pp. 1417-1436 | MR | Zbl

[29] Gardes, L.; Girard, S.; Guillou, A. Weibull tail-distributions revisited : a new look at some tail estimators, Journal of Statistical Planning and Inference, Volume 141 (2011) no. 1, pp. 429-444 | MR | Zbl

[30] Girard, S.; Guillou, A.; Stupfler, G. Estimating an endpoint with high order moments in the Weibull domain of attraction, Statistics and Probability Letters, Volume 82 (2012), pp. 2136-2144 | MR

[31] Geluk, J.L.; Haan, L. De Regular variation, extensions and Tauberian theorems, Center for Mathematics and Computer Science, Amsterdam, Netherlands, 1987 | MR | Zbl

[32] Girard, S. A Hill type estimate of the Weibull tail-coefficient, Communication in Statistics - Theory and Methods, Volume 33(2) (2004), pp. 205-234 | MR | Zbl

[33] Gomes, M.I.; Martins, M.J.; Neves, M. Improving second order reduced bias extreme value index estimation, REVSTAT - Statistical Journal, Volume 5(2) (2007), pp. 177-207 | MR | Zbl

[34] Gnedenko, B. Sur la distribution limite du terme maximum d’une série aléatoire, The Annals of Mathematics, Volume 44 (1943), pp. 423-453 | MR | Zbl

[35] Gomes, M.I. Asymptotic unbiased estimators of the tail index based on external estimation of the second order parameter, Extremes, Volume 5(1) (2002), pp. 5-31 | MR | Zbl

[36] Hill, B.M. A simple general approach to inference about the tail of a distribution, The Annals of Statistics, Volume 3 (1975), pp. 1163-1174 | MR | Zbl

[37] Hall, P.; Park, B.U. New methods for bias correction at endpoints and boundaries, The Annals of Statistics, Volume 30(5) (2002), pp. 1460-1479 | MR | Zbl

[38] Kratz, M.; Resnick, S. The QQ-estimator and heavy tails, Stochastic Models, Volume 12 (1996), pp. 699-724 | MR | Zbl

[39] Lepski, O.V.; Mammen, E.; Spokoiny, V.G. Optimal spatial adaption to inhomogeneous smoothness : an approach based on kernel estimates with variable bandwidth selectors, The Annals of Statistics, Volume 25 (1997), pp. 929-947 | MR | Zbl

[40] Mason, D.M. Asymptotic normality of linear combinations of order statistics with a smooth score function, The Annals of Statistics, Volume 9(4) (1981), pp. 899-908 | MR | Zbl

[41] Methni, J. El; Gardes, L.; Girard, S.; Guillou, A. Estimation of extreme quantiles from heavy and light tailed distributions, Journal of Statistical Planning and Inference, Volume 142 (2012) no. 10, pp. 2735-2747 | MR | Zbl

[42] Mercadier, C.; Soulier, P. Optimal rates of convergence in the Weibull model based on kernel-type estimators, Statistics and Probability Letters, Volume 82 (2011), pp. 548-556 | MR | Zbl

[43] Peng, L.; Yongcheng, Q. Estimating the first and second order parameters of a heavy tailed distribution, Australian and New Zealand Journal of Statistics, Volume 46(2) (2004), pp. 305-312 | MR | Zbl

[44] Resnick, S.I. Extreme values, regular variation and point processes, Springer Series in Operations Research and Financial Engineering, 1987 | MR | Zbl

[45] Rootzén, H.; Tajvidi, T. Can losses caused by wind storms be predicted from meteorological observations ?, Scandinavian Actuarial Journal, Volume 5 (2001), pp. 162-175 | MR | Zbl

[46] Schultze, J.; Steinebach, J. On least squares estimates of an exponential tail coefficient, Statistics and Decisions, Volume 14 (1996), pp. 353-372 | MR | Zbl

[47] Weissman, I. Estimation of parameters and large quantiles based on the k largest observations, Journal of the American Statistical Association, Volume 73 (1978), pp. 812-815 | MR | Zbl