Concentration des portefeuilles boursiers et asymétrie des distributions de rentabilités d’actifs
Journal de la société française de statistique, Tome 153 (2012) no. 2, pp. 1-20.

Cet article porte sur le lien existant entre l’asymétrie des distributions de rentabilités d’actifs et la concentration des portefeuilles. Nous commençons par rappeler la logique à l’œuvre dans la théorie de la diversification dans le but de faire apparaître qu’elle repose sur une réduction du risque au seul moment d’ordre 2 et à l’application corrélative de la théorie des erreurs du XVIIIe siècle. Nous exposons notamment la controverse ouverte par E. Fama en 1965 sur cette théorie des erreurs, pour faire apparaître qu’un changement dans le type d’aléa peut conduire à concentrer et non à diversifier. Ensuite, nous examinons comment l’inclusion dans le programme d’optimisation de la dissymétrie entre les gains et les pertes peut induire une propension à concentrer les portefeuilles. Nous présentons alors le modèle de Mitton et Vorkink [ 19 ], puis nous proposons ensuite une nouvelle approche dans l’esprit de ce modèle. Nous terminons par une application du modèle que nous proposons au marché américain, qui fait apparaître la grande différence de performance obtenue par un portefeuille classiquement diversifié, concentré selon les modèles existants, et concentré selon le modèle que nous proposons.

This article develops on the link between the asymmetry of asset return distributions and the concentration of portfolios. We start by recalling the rationale behind the theory of diversification, in order to let appear that this theory relies on a reduction of risk viewed only at order 2 and on the related application of the theory of errors, as developed during the XVIII th century. We also expose the controversy opened by E. Fama in 1965 on this theory of errors, in order to let appear that a change in the type of underlying randomness can lead to the concentration and not the diversification of portfolios. Then, we examine how the inclusion in the optimization program of the asymmetry between gains and losses can lead to a propensity to concentrate. We recall the main aspects of the Mitton and Vorkink [ 19 ] model, and then we propose a new approach in the spirit of this model. We end up with an illustration of the latter framework on American data, letting appear important differences between the performance obtained with a classically diversified portfolio, a portfolio concentrated along existing models, and a portfolio concentrated along the model that we propose.

Mot clés : Concentration, Asymétrie, Portefeuille, Co-asymétrie
Keywords: Concentration, Asymmetry, Portfolio, Co-asymmetry
@article{JSFS_2012__153_2_1_0,
     author = {Le Courtois, Olivier and Walter, Christian},
     title = {Concentration des portefeuilles boursiers et asym\'etrie des distributions de rentabilit\'es d{\textquoteright}actifs},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {1--20},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {153},
     number = {2},
     year = {2012},
     mrnumber = {3008596},
     zbl = {1316.91030},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2012__153_2_1_0/}
}
TY  - JOUR
AU  - Le Courtois, Olivier
AU  - Walter, Christian
TI  - Concentration des portefeuilles boursiers et asymétrie des distributions de rentabilités d’actifs
JO  - Journal de la société française de statistique
PY  - 2012
SP  - 1
EP  - 20
VL  - 153
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2012__153_2_1_0/
LA  - fr
ID  - JSFS_2012__153_2_1_0
ER  - 
%0 Journal Article
%A Le Courtois, Olivier
%A Walter, Christian
%T Concentration des portefeuilles boursiers et asymétrie des distributions de rentabilités d’actifs
%J Journal de la société française de statistique
%D 2012
%P 1-20
%V 153
%N 2
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2012__153_2_1_0/
%G fr
%F JSFS_2012__153_2_1_0
Le Courtois, Olivier; Walter, Christian. Concentration des portefeuilles boursiers et asymétrie des distributions de rentabilités d’actifs. Journal de la société française de statistique, Tome 153 (2012) no. 2, pp. 1-20. http://www.numdam.org/item/JSFS_2012__153_2_1_0/

[1] Athayde, G. M. de; Flôres Jr, R. G. Finding a maximum skewness portfolio - a general solution to three-moments portfolio choice, Journal of Economic Dynamics and Control, Volume 28 (2004), pp. 1335-1352 | MR | Zbl

[2] Arditti, F. D.; Levy, H. Distribution moments and equilibrium : a comment, Journal of Financial and Quantitative Analysis, Volume 7 (1972) no. 1, pp. 1429-1433

[3] Barone-Adesi, G. Arbitrage equilibrium with skewed asset returns, Journal of Financial and Quantitative Analysis, Volume 20 (1985) no. 3, pp. 299-313

[4] Constantinides, G.; Duffie, D. Asset pricing with heterogeneous consumers, Journal of Political Economy, Volume 104 (1996), pp. 219-240

[5] Conine, T. E.; Tamarkin, M. T. On diversification given asymmetry in returns, Journal of Finance, Volume 36 (1981) no. 5, pp. 1143-1155

[6] Fama, E. F. The Behavior of Stock Market Prices, Journal of Business, Volume 38 (1965), pp. 34-105

[7] Grinblatt, M.; Keloharju, M. What makes investors trade ?, Journal of Finance, Volume 56 (2001) no. 2, pp. 589-616

[8] Goetzmann, W.; Kumar, A. Why do individual investors hold under-diversified portfolios ?, Yale School of Management working paper (2004)

[9] Hanoch, G.; Levy, H. Efficient portfolio selection with quadratic and cubic utility, Journal of Business, Volume 43 (1970) no. 2, pp. 181-189

[10] Heaton, J.; Lucas, D. The importance of investor heterogeneity and financial market imperfections for the behavior of asset prices, working paper, International Financial Services Research Center Sloan School of Management Massachusetts Institute of Technology (1995)

[11] Harvey, C.; Siddique, A. Conditional skewness in asset pricing tests, Journal of Finance, Volume 55 (2000) no. 3, pp. 1263-1295

[12] Hassett, M.; Sears, R. S.; Trennepohl, G. L. Asset preference, skewness, and the measurement of expected utility, Journal of Economics and Business, Volume 37 (1985), pp. 35-47

[13] Jean, W. H. The extension of portfolio analysis to three or more parameters, Journal of Financial and Quantitative Analysis, Volume 6 (1971), pp. 505-515

[14] Jean, W. H. More on multidimensional portfolio analysis, Journal of Financial and Quantitative Analysis, Volume 8 (1973), pp. 475-490

[15] Kimball, M. Precautionary saving in the small and in the large, Econometrica, Volume 58 (1990), pp. 53-73 | MR

[16] Kelly, M. All their eggs in one basket : Portfolio Diversification of US Households, Journal of Economic Behavior and Organization, Volume 27 (1995), pp. 87-96

[17] Kraus, A.; Litzenberger, R. H. Skewness preference and the valuation of risky assets, Journal of Finance, Volume 31 (1976) no. 4, pp. 1085-1100

[18] Levy, H. A utility function depending on the first three moments, Journal of Finance, Volume 24 (1969) no. 4, pp. 715-719

[19] Mitton, T.; Vorkink, K. Equilibrium underdiversification and the preference for skewness, Review of Financial Studies, Volume 20 (2007) no. 4, pp. 1255-1288

[20] Odean, T. Do investors trade too much ?, American Economic Review, Volume 89 (1999), pp. 1279-1298

[21] Polkovnichenko, V. Household Portfolio Diversification : A case for Rank-dependant preferences, Review of Financial Studies, Volume 18 (2005), pp. 1467-1502

[22] Rubinstein, M. E. The fundamental theorem of parameter-preference security valuation, Journal of Financial and Quantitative Analysis, Volume 8 (1973) no. 1, pp. 61-69

[23] SMA BTP Eléments de réflexion sur la stratégie financière, document interne (2004)

[24] SMA BTP Less can be more. Méthode de gestion SMA BTP, document interne (2004)

[25] Sharpe, W. A Simplified Model for Portfolio Analysis, Management Science, Volume 9 (1963), pp. 277-293

[26] Samuelson, P. A. Proof that Properly Anticipated Prices Fluctuate Randomly, Industrial Management Review, Volume 6 (1965), pp. 41-49

[27] Simkowitz, M. A.; Beedles, W. L. Diversification in a three-moment world, Journal of Financial and Quantitative Analysis, Volume 13 (1978), pp. 927-941

[28] Scott, R. C.; Horvath, P. A. On the direction of preference for moments of higher order than the variance, Journal of Finance, Volume 35 (1980) no. 4, pp. 915-919

[29] Telmer, C. Asset pricing puzzles and incomplete markets, Journal of Finance, Volume 48 (1993) no. 5, pp. 1803-1832

[30] Walter, C. Le modèle linéaire dans la gestion des portefeuilles : une perspective historique, Cahiers du centre d’analyse et de mathématiques sociales, Volume 163 (2004)

[31] Whitmore, G. A. Third-degree stochastic dominance, American Economic Review, Volume 60 (1970), pp. 457-459