Pour l’algorithme de classification des
In the binary classification framework, a closed form expression of the cross-validation Leave-
Mot clés : Classification, Valildation-croisée,
@article{JSFS_2011__152_3_83_0, author = {Celisse, Alain and Mary-Huard, Tristan}, title = {Exact {Cross-Validation} for $k${NN} : application to passive and active learning in classification}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {83--97}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {152}, number = {3}, year = {2011}, mrnumber = {2871178}, zbl = {1316.62084}, language = {en}, url = {https://www.numdam.org/item/JSFS_2011__152_3_83_0/} }
TY - JOUR AU - Celisse, Alain AU - Mary-Huard, Tristan TI - Exact Cross-Validation for $k$NN : application to passive and active learning in classification JO - Journal de la société française de statistique PY - 2011 SP - 83 EP - 97 VL - 152 IS - 3 PB - Société française de statistique UR - https://www.numdam.org/item/JSFS_2011__152_3_83_0/ LA - en ID - JSFS_2011__152_3_83_0 ER -
%0 Journal Article %A Celisse, Alain %A Mary-Huard, Tristan %T Exact Cross-Validation for $k$NN : application to passive and active learning in classification %J Journal de la société française de statistique %D 2011 %P 83-97 %V 152 %N 3 %I Société française de statistique %U https://www.numdam.org/item/JSFS_2011__152_3_83_0/ %G en %F JSFS_2011__152_3_83_0
Celisse, Alain; Mary-Huard, Tristan. Exact Cross-Validation for $k$NN : application to passive and active learning in classification. Journal de la société française de statistique, Tome 152 (2011) no. 3, pp. 83-97. https://www.numdam.org/item/JSFS_2011__152_3_83_0/
[1] A survey of cross-validation procedures for model selection, Statist. Surv., Volume 4 (2010), pp. 40-79 | MR | Zbl
[2] Nonparametric density estimation by exact leave-
[3] A probabilistic theory of pattern recognition, Springer, 1996 | MR | Zbl
[4] Discriminatory analysis- nonparametric discrimination: Consistency principles, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA (1991) (Reprint of original work from 1952)
[5] Nonparametric Discrimination: small sample performance, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA (1991) (Reprint of original work from 1952)
[6] Class prediction and discovery using gene expression data, Science, Volume 286 (1999), pp. 531-537
[7] The Elements of Statistical Learning: Data Mining, Inference, and Prediction., Springer, New York, 2001 | MR | Zbl
[8] Employing EM and Pool-Based Active Learning for Text Classification, Mach. Learn.: Proc. of the Fifteenth Intern. Conf. (ICML ’98) (1998), pp. 359-367
[9] Active Learning with Real Annotation Costs, Proceedings of the NIPS Workshop on Cost-Sensitive Learning (2008), pp. 1-10
[10] Active Learning Literature Survey (2009) no. 1648 (Comp. Sci. Tech. Report)
[11] Transformation Invariance in Pattern Recognition – Tangent Distance and Tangent Propagation, International Journal of Imaging Systems and Technology, Volume 11 (2001) no. 3
[12] Query by committee, Annual Workshop on Computational Learning Theory (1992), pp. 287-294
[13] Cross-validatory choice and assessment of statistical predictions, J. Roy. Statist. Soc. Ser. B, Volume 36 (1974), pp. 111-147 | MR | Zbl